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ABSTRACT

As the World Wide Web and the Internet becomes the dominant
form of information distribution, consideration must be given to
the indexing of musical material including themes, melodies,
thythm tracks and so forth. This paper describes the implemen-
tation of an algorithm for locating song titles from the vocal input
of amateur singers. The prototype algorithm exceeds 90% accu-
racy for 9 different singers.

In memory of John Chei

1. INTRODUCTION

As the World Wide Web (WWW, the Web) becomes the domi-
nant form of information distribution, consideration must be given
to the access to musical material indexed by themes, melodies,
rthythm tracks and so forth. The development of Digital Libraries
also presents new opportunities for searching and retrieval via
acoustic input.

This paper describes the experimental results in the design and
implementation of an algorithm for locating song titles from the
vocal input of amateur singers. As expected, amateurs lack pre-
cise control of pitch and timing, therefore any successful search al-
gorithm must accommodate inaccuracies in both dimensions. An
experimental system is described that matches an acoustic vocal
input against a library of monophonic musical scores and returns a
list of matched results.

Past research into this topic has taken one of two paths: ei-
ther to folly analyze the input for musical content [1, 2] or to use
melodic contours (McNab, et al.[3, 4, 5]). In the first case, the
complexity of the analysis procedure is an overwhelming obstacle;
finding key signaturcs in amateur singers is rof easy (or even plau-
sible in some cases). In the second case, contours can formed by
up and down intervals and then matched against the database. Any
matching procedure must be forgiving, since human performance
is variable in pitch, timing and timbre. Using coursely quantized
intervals (up and down were used by McNab, et al.) is one such
method. We elected to use a different method of contour calcula-
tion and in turn, expect more from the matching procedure. The
block diagram of the system is shown below in Figure 1.

The input is recorded and then fed to a pitch detector. The
input is also given to a frequency domain based note on and off
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Figure 1: System block diagram

analyzer (o derive a pitch mean. The note is then compared against
a refercnce target and the result is reported to the user. Each input
must be compared against a subset of the reference pitches for all
the melodies in the library. Finally, a list of matches is presented
to the user.

In the next five sections, the insides of each of these blocks
will be detailed. To begin, the acoustic properties of singing will
be briefly reviewed. Next, the details of the signal processing al-
gorithms wili be given. Searching the database will be examined
next and then the results of the experimental trials will be pre-
sented. Finally, the conclusion presents the failures and successes
of the approach shown in Figure 1.

2. ACOUSTICS OF SINGING

Many researchers have examined the production of the singing
voice from both the acoustic and physiological point of view. There
are many aspects to the production of singing including breathing,
the vocal source and complex articulation. An overview can be
found in the book by Sundberg|6).

Vocal pitch is different for singing (as opposed to speech): the
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singer is expected to maintain a constant pitch over the duration of
the note as well as effect the transition to a new pitch within the
small temporal boundary of the inter-note spacing.

Formant structure is different in speaking and singing — per-
haps most notable is the existence of the “singer’s formant™[7],
which is introduced by the lowering of the singer’s larynx. This
results in a widening of the third formant and an increase of output
around 2.5 to 3 kHz and manifests in a timbral change.

3. SIGNAL PROCESSING

Signal processing is performed wsing the digilized acoustic input,
with the purpose of deriving a “piano roll” type score (i.c., pitches
and durations) that is compared with the reference score. Pitch
detection is the first phase of analysis, followed by a segmentation
(note on/off time) detection aigorithm.

3.1. Pitch detection

As shown in Figure 1, the input waveform is first analyzed for
a pitch track. There are many pitch algorithms to choose from
(see the encyclopedic book by Hess[8]) but Talkin's algorithm[9]
is fairly robust. Pitch detection is often problematic around the
transition between vowels and consonants (in particular, between
voiced and unvoiced scgments)} and this will cause problems in the
pitch matching due to the introduction of extra notes in the singer
derived score.

3.2. Segmentation

Detection of note on and off times (so-called “onset” and “offset”
times) can be done in either the frequency or time domain. In the
frequency domain, the pitch track is examined for sudden changes
of frequency. In the time domain, the amplitude envelope is exam-
ined for silences or other changes of amplitude. As might be ex-
pected, singer performance will effect the time domain waveform.
In particular, when notes are performed with legato or portamenio,
the amplitude track exhibits little to go on. On the other hand, the
derivative of the pitch track {or any other frequency waveform) can
be analyzed for positive or negative slopes.

Experimentally, it was found that the third formant was the
cleanest to derive this time domain behavior. The input waveforn
was filtered using a 16 band ERB (Equivalent Rectangular Band-
width) filter[10, 1}] and then converted to decibels. The high-
est band was convolved with a 125 millisecond Hann window to
smooth the input in preparation for taking the derivative. This is
shownin Figure 2. Next, the two point discrete time derivative was
calculated. This is thresholded against the mean of the derivative
to find the first note. Likewise, going backward from the end of
the recording, one can find the last note. Between these two time
points, one can find the on and off peaks. These form the on and
off points. Next, starting from the earlicst on peak, one advances
to the next stop peak discarding intervening start peaks. This can
happen if there is a step in the output of the third formant filter.

At this stage, the on and off times are used to calculate the
mean of the pitch from the input pitch track. This is a requirement
since sustaining a constant pitch over vowels is not possible with
most amateur singers.

Finally, the experimental “piano score” of pilch and time dura-
tions is ready to be compared with the reference score of the tune
in guestion.
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Figure 2: Bandpass filter output

4. COMPARING THE TUNES

In order to accommodate variable timing of the sung input as well
as inaccurate pitches from the singer, Dynamic Time Warping
(DTW} is used to match the notes. It has been used with great
success in Automatic Speech Recognition| 12] where it is typically
used to compare cepstral coefficients, In Dynamic Time Warping,
the time axis is distorted 1o minimize the error resulting from the
comparison of the two sequences. Sakoe and Chibaf13] describe
how to optimize DTW explicitly for the speech recognition task
taking into account slope constraints over the time warp. Dynamic
Time Warping depends critically on a distance function [} given
the two time series vectors X and Y. The classical view of the
time normalized distance vector is given in Equation 1.

pmy d(e(k)) - wik)
fo:] w(k)

In equation 1, w(k) is the weighting function and d(e(k)) is the
distance function. When w(k) = 1, then the weighting function is
uniform over all time.

Dynamic Time Warping is a dynamic programming method
that eritically depends on a valid metric to match a test sequences
against a reference sequence.

The first step is to put the two sequences on the same time
scale, Accordingly, the reference score is truncated to the same
number of notes as the test input (this assumes, of course, that the
reference is longer than the test input). Second, the time scale is
made the same for the two scores by rescaling the durations of the
notes. This is required because DTW doesn’t work when the time
scale differences are too extreme. Next, the pitches are made zero
mean by subtracting the mean from all the pitches. A zero mean
is required so that the difference between the two note inpufs will
be zero in the identical case. The nex! step is to transpose the test
input to the same range as the reference, This is easier than it may
seem. Pick the lowest note in each score; the transposition of the
test score is divided by the ratio of the two lowest notes. This
means that comparing a scor¢ transposed by a constant interval
with the original score will be seen as identical, as they should.

A metric function was designed to calculate the distance be-
tween the test and reference notes that accommodates the structure

DIX,Y) = (1
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of the equal tempered musical scale.

log(X) — log (Y}
log( T3/2)

The sum of the crrors calenlated over the time stretching procedure
{(sec equation 1) is the end result of the time-warping phase; lower
scores arc better matches, All of the reference library scores are
compared against the pitch track of the singer; the lowest score is
the “winner”.

Another sequence comparison method derived by Mongeau
and Sankoff[14] from Knuth-Morris-Pratt string matching was cim-
ployed by McNab, et al.[3]. McNab, et al. can use this method
because they coursely guantize the pitches to “Up” and “Down”.

X - Y] = @

5. EXPERIMENTAL RESULTS

A group of nine willing volunteers sung scales and then well known
songs using the phoneme /ma/ in place of the words. This simpli-
fies the analysis considerably since only one consonant and one
vowel are used. The scale amply demonstrated the inability of
untrained singers to maintain semitone pitch intervals or, in some
cases, sing an octave.

5.1. Recording

The nine singers sang a number of songs including “Happy Birth-
day” and “Twinkle-Twinkle Little Star”. Thesc two songs were
used in the experiments. They were recorded at 48 kilosamples
per second and downsampled to 8 kHz with 16 bit samples. In the
next seciion, a real example is processed {rom beginning to end.

5.2. Example processing

In Figure 3, the input waveform from a singer is given. The tune
is “Twinkle-Twinkle Little Star”.
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Figure 3: Time domain input

The result of the pitch detector is shown in Figure 4.

Next, the reference score is truncated to be the same number
of notes as the input. Then, the time scales are made identical and
the input is transposed. The result is shown in Fignre 5.
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Figure 5: Time rescaled and transposed notes

The result of applying DTW can be found in Figure 6. This
shows that the comparison against the song reference is nearly a di-
agonal after the time warping. The mean error was 0.0285. When
compated against a different tune (Figure 7), the resulting crror
mean was 0.0934. This difference, though small, is sufficient to
distinguish the two in all but one case,

5.3. Resulis

Errors result from the detection of pitch on and off times as well as
from pitch detection errors. Pitch detection is easiest during vow-
els, but the transitions from vowel to consonant can cause prob-
lems. In spite of these inaccuracies, the prototype algorithm ex-
ceeds Y5% accuracy for nine different singers for a simple tne li-
brary. The example shown above illustrates that mean errors, even
for dissimilar songs, can result in a close miss. A better metric is
needed to clearly illustrate song differences.
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Figure 0: Backtrace vector from DTW for correct song
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Figure 7: Backtrace vector from DTW for incorrect song

6. CONCLUSION

Systems like the one described here provide a first siep toward au-
tomated access to musical scores and recordings. There are many
turther avenues of research including:

* The prototype system described here only works for a small
number of scores. Large database searching techniques are
needed to reduce search time.

» Expanding the range ol the inpul to cover all vowels and
consonants so that words can be used instead of simple
phoneme, thereby increasing the naturalness of the inpui.

¢ Use ol other acoustic inputs including humming, whistling
and drumming

In spite of these limitations, the prototype system described here
shows great promise for use in accessing web based musical data-
bases. The basic methodology of timing identification and dy-
namic time warping could be used for other inputs including rhyth-
mic inpuis,
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