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ABSTRACT

Energy separation algorithms using Teager’s energy op-
erator have been used to analyze modulations in speech
resonances, and energy separation in bird song. Here
we apply energy separation and the energy operator
to the analysis and resynthesis of musical instrument
sounds. We show how the energy operator can be used
to (a) examine vibrato and tremolo (b) precisely deter-
mine frequencies of harmonics (c) determine synthesis
parameters for an excitation/filter model.

1. INTRODUCTION

Newer techniques to synthesize musical sound use phys-
ical models to represent the instrument. A mathemat-
ical model of the instrument is devised with control
parameters that specify the sound. These parameters
can often be determined through analysis of a recording
of the instrument being modeled.

One common class of models is that of an excitation
signal feeding a resonant filter. For example, in a guitar
sound the excitation signal could represent the physi-
cal excitation, or pluck, and the resonant filter could
represent the actual guitar string. In this example the
control parameters are the excitation signal, and the
filter poles and zeros.

We are interested in two aspects of musical instru-
ment modeling: 1) separation of the excitation and res-
onator 2) modeling of performance parameters such as
tremolo (AM) or vibrato (FM). We will show how “En-
ergy Separation” can be used to determine synthesis
parameters for an excitation/filter model, and also be
used to follow tremolo and vibrato.

Mark Kahrs was partially supported by the ARPA tri-service
MHDL effort, monitored by ARL DAALO01-93-K-3370.

0-7803-3192-3/96 $5.00©1996 IEEE

2. ENERGY SEPARATION

Energy separation algorithms use the Teager energy op-
erator to separate the amplitude modulated (AM) and
frequency modulated (FM) components of an AM-FM
signal. The Teager energy operator is a very simple
time domain operator. Many properties of this simple
operator were elucidated by Kaiser [1]. Examining a
few of these properties offers a more intuitive under-
standing of energy separation algorithms.

Kaiser showed how the energy operator for contin-
uous time signals,

Telz(t)] = &%(t) - 2(1)£(?) 1

can be used to find the amplitude and frequency of a
signal of the form, s(t) = Acos(w.t + §) by applying
the energy operator to both s(t) and s{t). It is easy
to show that, ¥ [s(t)] = A%w?. Also, ¥ [5(t)] = A%w}.
Therefore, the instantanecus amplitude and frequency
can be determined by:

_ L [¥e[s(t)]
We = 2FJ T [5(1)] )
Ue[s(t)]
4] Vv ¥e[5(2)] ®)

Kaiser showed similar properties of the discrete-
time energy operator:

Vofe(n)] = 2%(n) —z(n+ Da(n—1)  (4)

Which can be used to find the amplitude and frequency
of a signal of the form, z(n) = Acos(Q.n + 8), by ap-
plying the energy operator to both z(n) and the first
difference, y(n) = z(n) - z(n — 1). Kaiser showed
that, ¥ale(n)] = A?sin?(), and also, Yy[y(n)] =
4A%sin*(Q./2) sin?(Q). Therefore, the discrete time
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versions of (2) and (3) are:

= arccos —'M
= (1 mxm)}) ©
1= [l (6

Maragos, Kaiser and Quatieri [2] show how to use
the energy operator to estimate the instantaneous am-
plitude and instantaneous frequency of an AM-FM sig-
nal. Given the AM-FM signal x(n):

z(n) = a(n) cos ¢(n) (M)
#(n) = Qen + Qm/(; g{m)dm + 6 (8)

with instantaneous frequency defined in terms of carrier
frequency {2, and maximum frequency deviation Q,,:

Qu(n) = ~-6(n) = 2 + Ung(n) (9)

Maragos, et al. define an energy separation algorithm
called “DESA-1”:

+

;(n) = arccos { 1 — y(n)] + ¥ly(n + 1)]
iln) = (1 T[a(m) ) (10)

ED
1- (1 *ieipe)
yn) = 2(m) - 2(n—1) (1)

These estimates are valid under the assumptions that
the bandwidths of a(n), Q;(n), and Q,, are small com-
pared to Q..

Maragos, et al. used energy separation to analyze
modulations in speech resonances. They used a Gabor
bandpass filter centered at an estimate of the resonance
frequency to filter out a speech resonance. The output
of that filter was then input to the DESA-1 algorithm.
In this work we use a similar technique for the analysis
of musical instrument sounds.

e

la(n) |= 7 (1)

3. ANALYSIS

Musical sounds generated by resonate structures have
spectra composed of harmonics spaced very close to in-
teger multiples of a fundamental frequency. Our anal-
ysis consisted of first estimating the fundamental fre-
quency of the sound. We did this through peak picking
of the discrete-time Fourier transform (DTFT). Next
a bank of bandpass filters was created to separate the
harmonics. The output of each bank was then passed
into the DESA-1 algorithm to determine the AM and
FM components of each harmonic.

Like Maragos, et al. we used Gabor bandpass filters
given by:

h(n) = e~ cos(2nfonT) —N<n< N (13)

Where f. is the center frequency, T is the sampling pe-
riod, bandwidth is chosen by setting b to BW-Tv/2r,
and N is chosen so that h(n) is small at the edges, that
is exp(—(bn)?) = 10~%. The center frequency of the
first filter was set to the estimate of the fundamen-
tal frequency. Each additional filter in the bank had
its center frequency set to an integer multiple of the
fundamental frequency. This was a logical choice that
worked well with the sounds that we analyzed. The
choice for bandwidth of the filter was not obvious. The
filter needs to be wide enough to prevent filtering out
the modulations that we are trying to detect. However,
if the filter is too wide, adjacent harmonics will inter-
fere. We achieved good results on many sounds using a
bandwidth of one quarter the fundamental frequency.

The DESA-1 algorithm was applied to a plucked
string (electric guitar), and a plucked string with vi-
brato (electric guitar).

The DESA-1 algorithm was applied to the first 400
ms of this guitar pluck which was recorded at a sam-
pling frequency of 22050 samples per second. Figure 1
shows the results for the first harmonic. Note after the
initial transient the relatively constant frequency and
decaying amplitude. Similar results were obtained for
higher harmonics. :
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Figure 1: DESA-1 applied to guitar pluck.

A good example of how the DESA-1 algorithm can
find vibrato and tremolo is found in the third harmonic
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of a guitar pluck played with vibrato recorded at 22050
samples per second. This is shown in figure 2.
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Figure 2: FM and AM modulations of guitar pluck with
vibrato.

The use of vibrato is clearly found on this exam-
ple. It is interesting to look at the relationship be-
tween vibrato and tremolo. Looking at the frequency
track, one sees periods of relatively flat frequency fol-
lowed by a pulse of increased frequency as the string is
stretched. After the string is stretched, the amplitude
track bumps up slightly due to the energy added to the
string from the vibrating finger.

4. SEPARATION OF EXCITATION AND
RESONATOR

An appropriate model for musical instruments with
strings that are plucked or struck is a short excitation
signal fed into a bank of resonators[3]. We model each
harmonic of the sound with a single resonance. A filter
is designed to implement these resonators. The poles
are located to give the proper resonance frequencies,
and the proper decay rate for each resonance. Once
the filter is constructed, it is inverted, and used to ex-
tract an excitation signal that can be used to resyn-
thesize the instrument sound when passed through the
forward filter. We define the transfer function of the
resonant filter as:

H(z) = ﬁg; (14)
Aiz) = -dsz™) (15)
k=1

M
B(z)= [ - az™) (16)

k=1
The resonances of the filter are determined by its
poles. The zeros will affect the excitation signal. The
filter H(z) must be stable, and must have a real impulse
response. Therefore, the poles must come in conjugate
pairs, and be located inside the unit circle. To esti-
mate the pole locations we used energy separation to
determine instantaneous frequency tracks, ;(n) and
amplitude functions a(n) for each partial. Next, we
manually picked a steady-state portion of the signal
R; < n < Ry by visually inspecting the signal wave-
form. Next we estimated the angle and magnitude of

each pole as follows:

) R2
lon= —pg O @) (D)
n=R,
1 &,
| ek |= m’éz_gl(a(” + 1)/a(n)) (18)

Hanson, Maragos, and Potamianos {4] used energy sep-
aration with an iterative approach to find speech for-
mant frequencies. They used a similar approach. The
estimate of the formant frequency was the average of
the output of the instantaneous frequency portion of
the energy separation algorithm.

Now that we have determined the pole locations we
need to pick a suitable numerator polynomial B(z), and
then find the excitation by filtering the original signal
with the inverse filter. Laroche and Meillier[3] discuss
the inverse filtering problem as an ill-conditioned prob-
lem. If the resonant filter has deep valleys in its magni-
tude response, the corresponding inverse filter will have
large peaks. This could cause noise in the instrument
sound to be amplified at these frequencies and swamp
the resulting excitation signal. For example, all-pole
filters generally exhibit high attenuation in the high
frequency region. This will cause the inverse filter to
have a large high frequency gain, and the excitation
will be swamped with high frequency components that
are not necessarily meaningful. Laroche and Meillier
suggest the use of a parallel second-order cosine sec-
tion filter because it is better conditioned. Also, B(z),
the numerator polynomial for this filter, is known to be
minimum phase and therefore invertable. The numer-
ator polynomial for this filter is:

P
B(z)=>Y_ [l -2z (19)
=1 j#i
We had good results using this method for the first
six harmonics but larger filters became unstable due to
the poor conditioning of the filter coefficients.

999



Figure 3 shows the excitation obtained from inverse
filtering of a guitar pluck. Note that it is a short pulse
followed by high frequency components left over be-
cause we only used the first six harmonics.
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Figure 3: Excitation obtained from inverse filtering gui-
tar pluck.

Resynthesis with this excitation achieves a close but
not exact match. This is because of the limited num-
ber of poles permitted before the problems of numerical
stability appear. Figure 4 shows a short segment from
the middle of the original guitar signal and the corre-
sponding segment from the middle of the resynthesized
signal. Note that they are very similar, but not identi-
cal.

5. CONCLUSION

Discrete energy separation algorithms are useful for an-
alyzing musical instrument sounds. We have shown the
use of energy separation in the analysis of an electric
guitar sound. Tremolo and vibrato was followed, and
frequencies and decay rates of resonances in a reso-
nant filter were found. We used this resonant filter to
resynthesize the guitar sound using an excitation/filter
model.

Another area to be investigated is the use of the
output of the energy separation algorithm to find con-
trol parameters for the synthesis of musical instrument
sounds. For example, the guitar vibrato and tremolo
identified earlier in this paper could be used to control
the resynthesis to produce a natural sounding vibrato.
This is currently being worked on, along with a similar
application of energy separation to piano sounds in [5].
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Figure 4: Original and resynthesis of portion of a guitar

pluck.
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