SIGNAL PROCESSING USING MHDL

Mark Kahrs

Dept. of Electrical and Computer Engineering
Rutgers University, P.O. Box 909
Piscataway, NJ 08855-0909
kahrs@ece.rutgers.edu

ABSTRACT

MHDL is a new language created for the behavioral descrip-
tion of state-of-the-art microwave hardware. A microwave
communication system includes both continuous time and
discrete time processing subsystems. MHDL includes a
number of novel features; some of these features are of di-
rect use in the specification of both continuous time and
discrete time signal processing. MHDL includes data types
complex and z that find direct use in signal processing
applications. This report describes the use of MHDL in the
description of signal processing algorithms.

1. INTRODUCTION

MHDL (the MIMIC Hardware Description Language) is a
new language created for the behavioral description of state-
of-the-art microwave hardware. A microwave communica-
tion system includes both continuous time and discrete time
processing subsystems. MHDL includes a number of novel
features that will be described shortly; several of these fea-
tures are of direct use in the specification of both continuous
time and discrete time signal processing.

Initially, an examination of the difference between a
description language and an algorithmic language will be
detailed. Next, a brief look at some past DSP languages
will be included. In the subsequent section, we examine the
specification of continuous time processing and then discrete
time processing. Next, we consider how to specify a mixed-
mode system, such as a A/D and D/A converter. Finally, we
conclude with a report on the current status of MHDL and
information about available systems.

1.1. Description vs. Algorithmic languages

Description languages describe behavior, not algorithms. In
other words, a description language says what the function
of the circuit should be and not how to perform or calcu-
late the function. MHDL is just such a language. It is

This work was partially supported the ARPA tri-service MHDL effort,
monitored by ARL DAAL01-93-K-3370.

3239

meant to describe the behavior of various subsystems in a
microwave circuit but not the actual detailed simulation of
each subsystem.

1.2. Languages of the past

Since the latter 1960s, a number of languages have been
designed for DSP applications. BLODI [1] was perhaps
the first block diagram language to be created. CLASP [2],
another block diagram language, was created for use in a
very high level silicon compiler. In the recent past, Kopec’s
SRL [3] (based on his thesis [4]) used the Lisp Machine
environment for the creation of streams and array operators
as part of a larger system (ISP [5]). More recently, a group
at INRIA used the notion of a centralized clock as a theo-
retical underpinning for a DSP language called “SIGNAL”
[61[7]. Silage [8][9] is another language developed for sil-
icon compilation of DSP algorithms. It is an applicative
language with a built in delay oprator. It has avoids explicit
state variables by eliminating variable assignments (Silage
has equations but not assignments).

Block diagram languages are often too high level; some-
times one wants to specify algorithms, not blocks (one can
specify an algorithm inside a block but that defeats the pur-
pose). Often a language offers a single formalism to force
the user into using one particular model of DSP computa-
tion. This may not be what the user wants, for example,
if the user’s application doesn’t fit easily within the model
(adaptive filters often present problems because of feedback;
the language may or may not make feedback easy to spec-
ify). All of the DSP languages mentioned lack the ability to
specify the higher level design constraints this is where a
description language really counts. For example, one would
like to make a high level specification of a filter and have the
rest of the parameters of the filter calculated automatically.

0-7803-2431-5/95 $4.00 © 1995 |EEE

1.3. MHDL features

MHDL was designed to specify the behavior of large mi-
crowave communication systems; in order to specify all the
levels in such a system, the language was designed to be
extremely flexible and extensible. Many features of MHDL
were borrowed from the new programming language Haskell
[10]. Haskell has been used experimentally for the descrip-
tion of DSP algorithms [11].

The first method of extending MHDL is the type system.
MHDL types are polymorphic, that is, a function can accept
more than one type for an argument. Type usage in MHDL
is statically checked (i.e., at compile-time). The type system
was derived Haskell’s “type classes”. Type classes are an
extension of the normal type system and resembles the object
programming notion of method declaration. The declaration
of the Complex type class is shown below:

class Complex (a, b) {

mkPolar b ->b -> a;
mkRectang b ->Db -> a;
realPart a -> b;
imagPart :: a -> b;
cmag : a -> b;
cphase :: a -> b;

} where { Real (a), Real (b) 1} :

This declares the class of complex numbers (with a real
and imaginary part) and the associated functions (a -> b
denotes a function with single argument a returning a value
b. In this case, both the input and output values are real.
The Complex type class can be used by an instance, for
example, to form a rectange from complex points.

The MHDL standard library includes the standard types
Int and Float. It also includes Complex (a tuple of
Reals, shown above) in Cartesian space and also Polar,
the polar coordinate representation. It can also specify a
Ratio, i.e., rational numbers as well as signals. Signals
have two domains: continuous signals in £, with continuous
Laplace and Fourier transforms and also discrete signalsin £,
with Z-transforms. Periodic signals can be either continuous
or discrete and use the discrete Fourier Transform (via the
FFT). MHDL also features physical types, i.e., types with
measurable units (these are denoted within single quotes).
A prime example is frequency, which is declared

dimension frequency = 'time” (-1)';
unit hertz of frequency = ‘second” (-1)
variations Hz;

where frequency is a dimension of time, as shown in
the declaration above. Conversion is done automatically
between compatible units, as in degrees and radians:

unit radian of plane_angle
variations rad, rads, radians;

unit degree of plane_angle conversion
floatApproxRational ((pi double) /
180, 1.0E-10) radian
variations degrees, deg;

MHDL is a ‘first class’ language, so functions can be
values and returned from functions just like any other value.
MHDL also includes “pattern matching” as a fundamental
part of the language. Pattern matching is used in numer-
ous ways including searching data structures, doing case
selection and iteration. Constraints are also available-as a
mechanism to verify an assertion about any expression; con-
straint failure is reported to the user immediately. MHDL
has many other features but we shall concentrate on the fea-
tures most useful in the specification of signal processing.

2. CONTINUOUS TIME PROCESSING

Consider a simple low pass filter:

components
LP :: lowpass_filter
definitions
f_pass = 700 'Hz’;
f stop = 1000 ‘Hz’;
ripple = 0.1 'dB’;
end LP;

end components;

Here, the definitions serve as method for specifying the
behavior but not the implementation of the filter. In particu-
lar, the filter could be implemented using in either continuous
or discrete time. The next step is to refine the implementa-
tion of the filter. For example, we could specify the behavior
as follows:

structure frequency_response
configuration typical
for lowpass_filter use
if (ripple > 1 'dB’) then
Chebychev
else Butterworth;
end typical;
end frequency_response;

Here, the specification calls for the system to use a
Chebychev filter if the ripple parameter is greater than 1
dB otherwise, use a Butterworth. The definition of the filter
will be done inside another model:

model Butterworth
structure continuous
cmag(H(s)) = 1/(1 + (s/s_c)” (2 * N));
N = ceiling(log (10~ (A_stop/10 -1)/
10"A_pass/10 -1) /

3240

2 * log (f_stop / f_pass));
end continuous;
end Butterworth;

First, the use of = denotes an equation, not an assign-
ment. The binding between the parameter names inside the
filter model (s, s.c, N and the amplitude and frequency
parameters) with the specification in the model is done ex-
plicitly by the MHDL interpreter.

The expression of the Butterworth polynomial can fol-
low any number of paths: first, one can specify the polyno-
mial in equational form as a function of s, i.e.,

H(s) = K / ((s + al[0])"2*(s + a[l]l)"2)

Another possibility is to express the polynomial as a function
of poles and zeros, i.e., as a function that takes two tuples:

H(s) = K * Zeros([1)/
Poles([(2.0*PI*440, -0.65*J),
(2.0*PI*-400, -0.80*J)1])

Here, Poles and Zeroz are functions that accept a list
of complex points and form products [T (s + s;) where
M is the length of the list and each complex point is s;.

- MHDL also includes a number of continuous time operators,
e.g., integration and differentiation. But these operators are
just for specification; they do not say how the operator is
simulated. Using such an operator, the specification of a
sample and hold is easy:

output.voltage =
integral(t) (t, t+1/Fs) C;

3. DISCRETE TIME PROCESSING

MHDL also includes the complex z domain. So, an MHDL
user can specify a digital filter by just giving its polynomial
in z. Of course, continuous time filters in s and discrete
time filters in z can not be directly interconnected because
MHDL will find a type error when the discrete time and
continuous time variables interact. Below is a digital second
order section

model Butterworth
structure discrete
H(z) = Hi(z, N) where
Hi(z, j) =
if (j == 0) then 1 else
Hi(z, j-1) *
({(G[3] * (1L + 1/2)"2) /
(1 +
all,jl*1/z +
al2,31*1/z*1/2z));
end discrete;
end Butterworth;

Here, the IIR nature of the filter is exposed by the step
downrecursion. Note the use of the different structure name
to differentiate its behavior from the continuous version
shown above (but the parameter N is the same).

MHDL features “lazy evaluation”, i.e., functions are not
called until needed. This mechanism can be used to create
streams a la SRL. The key relevant feature of laziness is the
ability to construct infinite sequence of samples and not eval-
uate the sequence until each sample is needed. Interpolation
and decimation can be easily implemented using lazy eval-
uation: interpolation (S, N) takes a discrete signal
S and inserts an N — 1 zeros; decimation (S, N) re-
moves N — 1 samples by either advancing the time pointer
in the sequence or by truncating the list. What’s important
to realize is that because of the lazy evaluation, the entire
vector does not need to be computed; rather, the insertion
and deletion of samples happens by need.

4. MIXED MODE

Push comes to shove at the interface of continuous and dis-
crete time systems. Here, any system specification language
must be able to interconnect both parts (and simultaneously,
any simulator must be able to simulate both parts). Because
of its flexible type structure, MHDL can represent both parts
and furthermore prohibits explicit interconnection of con-
tinuous and discrete time components. How then, can one
specify their interconnection? The answer is coercion. Con-
sider the analog to digital converter: we can break this down
into two parts, sampling and quantization.

model analog_digital_converter
structure topology
connections input, output;
output.out =
Quantizer (Sampler (input)) ;
end topology:
end analog_digital_converter;

Here, Sampler is a function from a continuous input
and continuous time that returns a continuous voltage and a
discrete time. The Quantizer function converts this
to a discrete voltage value. Note that the quantized out-
put can be made into a new, separate type (i.e. an instance
of the Ratio type. This will insure that use of quantized
signals from different quantizers can not be confused. How-
ever, each of these types must share the same type class so
they can be used in the same functions, i.e., so they can all
use the same digital filters.

Here, we demonstrate the use of coercion in a DAC to
coerce a discrete time input to a physical value.

coercion ToV ::
DiscTimeDim (p) = \(t) -> p;

3241

DiscTimeDim (a) -> Phys (a);

model digital_analog_converter
structure electrical
connections input, output;
output.voltage Filter (Hold(
ToV{(input.in)));
H(f) 1/f_sample *
exp{(-j * PI * £_d)
(sin(P1 * £.4) / PI * £_d)
where { £.d = £/f_s };
end electrical;
end digital_analog_converter;

*

ToV is the coercion function; its type declaration is de-
clared first, the function definition of the conversion function
DiscTimeDim follows. DiscTimeDim converts the dis-
crete time signal input into a continuous physical output.
Hold is the output sample and hold and Filter is the
anti-aliasing filter whose response is described by H(£).

5. CONCLUSION

MHDL is a different kind of Hardware Description Lan-
guage because of its flexibility. This malleability is due to
its type definitions and facilities for specifying hierarchical
systems. MHDL can be used for the specification of both
continuous and sampled signal processing systems. Further-
more, it can also specify mixed systems, such as A/D and
D/A converters, so that signal processing systems can be
specified from continuous input to discrete time processing
to continuous output.

MHDL is on its way to becoming a new IEEE Standard
through the SCC-30 committee. A fully public domain
implementation is available and is distributed without fee.

6. REFERENCES

[1] B.J. Karafin. A new block diagram compiler for simu-
lation of sampled-data systems. In Fall Joint Computer
Conference, pages 55-61. AFIPS, 1965.

[2] M. Kahrs. Silicon compilation of a very high level
signal processing specification language. In P. R. Cap-
pello, editor, VLSI Signal Processing, pages 228-238.

1IEEE Press, 1984.

[3] G.E. Kopec. The signal representation language SRL.
In IEEE Intl. Conference on Acoustics, Speech and

Signal Processing, pages 1168-1171, 1983.

G. E. Kopec. The representation of Discrete-time sig-
nals and systems in programs. PhD thesis, MIT, MAY
1980.

[5] G. E. Kopec. The integrated signal processing sys-
tem ISP. Technical Report Rapport No. 644, Fairchild

Laboratory for AI Research, June 1983.

[10]

(11]

3242

[6] T. Gautier P. Le Guernic, A. Nenveniste. Signal: Un
language pure le traitement du signal. Technical Report
Rapport No. 206, INRIA, May 1983.

[7] M. Le Borgne P. Le Guernic, T. Gautier and C. Le
Maire. Programming real-time applications with sig-

nal. Proc. IEEE, 79:1321-1336, 1991.
(81

Paul Hilfinger. A high-level language and silicon com-
piler for DSP. In Proc. Custom Integrated Circuits

Conference, pages 213-216, May 1985.

[9] D. Genin, P. Hilfinger, J. Rabaey, C. Sheers, and and H.
DeMan. DSP specification using the Silage language.
In [EEE Intl. Conference on Acoustics, Speech and

Signal Processing, pages 1057-1060, April 1990.

P. Wadler P. Hudak, S. L. Payton-Jones. Report on
the programming language Haskell, a non-strict purely
functional language, version 1.2. ACM SIGPLAN No-
tices, 277, May 1992.

David M. Goblirsch. Digital Signal Processing in
Haskell. In Philip A. Wilsey and David Rhodes, ed-
itors, Intl. Conference on Simulation and Hardware
Description Languages, pages 17-22, January 1994.

