Technology Mapping in
Circuit Design Aids

CDA IS A COLLECTION of small
computer-aided design programs
used by about a dozen designers
for board-level medium- and large-
scale hardware. These programs
have evolved continuously over
the last 15 years to keep pace with
the increasing variety and diversi-
ty of chips.

Fitter programs attempt to con-
vert logical equations to specific tar-
get devices or technologies. We say
“attempt” because it's possible that
the input specification will not fit
onto the device; either because the
specification is too large or possibly
because the device lacks a feature
required in the specification. (An
example would be asking for a reg-
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CDA (Circuit Design Aids) is a
collection of tools for the design of
digital systems. These tools
transform product term input into
fuse maps for a variety of
programmable parts including

programmable logic devices
{commonly called PALs) and field-
programmable gate arrays.

minimization. XIL is something of
ablend between XNF and Act, per-
forming some optimization (such
as tree factorization) in preparation
for the Xilinx 4000 series pack-
place-and-route tool. Act produces
a format suitable for the Actel
place-and-route software.

A simple model

Whatever the target device, we
use the same simple objects to
specify the desired behavior. These
objects have a combinatorial sec-
tion followed by a control section,
asshown in Figure 2a-f. The control
section may be simply a buffer, an
inverter, a clocked device, a tristate
driver, or combinations of these

ister from a combinatorial device.)

The flow graph in Figure 1, next page,
illustrates the use of the fitters in the
CDA context. The symbolic product
terms in the figure are the output format
of several programs, but we don’t de-
scribe them here.

CDA (Circuit Design Aids) contains
six device-specific fitters: Part, Npart,
Act, Act2, XNF, and XIL. Part targets
common first-generation programma-
ble logic device (PLD) parts common-
ly called PALs. Npart targets the newer
Advanced Micro Devices MACH series.
MACH parts are a two-level logic es-
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sentially composed of 22V10 input
blocks interconnected through a net-
work. Trimberger calls this device class
complex PLDS (CPLDs). Both Part and
Npart produce partitioned product
terms that the Xpal fuse compiler con-
verts to JEDEC? fuse format.

Act produces a variety of output
forms including ADL format for Actel’s
place-and-route software. Act2 is a sim-
ilar program for the newer ACT 2 chips.
The XNF program translates the sum of
products to Xilinx Netlist Format; Xilinx
software for the 3000 series does its own
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(one such example is shown in
Figure 2f). A clocked device can in-
clude D flipflops, toggle flip-flops, set-
reset latches, or whatever the input
language of the equation translator can
syntactically describe.

Assimple PAL like the 16L8 (16 inputs,
8 inverted outputs) requires a control
section that is just a simple inverter fol-
lowed by a tristate driver, while a 16R8
(16 inputs, 8 registered outputs) would
use the control sections shown in Figure
2f. More sophisticated devices allow the
selection of arbitrary configurations via
additional fuses. Even though the mod-
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Figure 1. CDA fitter usage.

el is simple, designers have used it for
random logic sections of ICs as well as
the programmable parts we describe
here.

Consider the simple four-bit counter
shown in Figure 3. The x output nodes
are D flip-flops clocked by the clock in-
put clk. The @ input variables are on the
load side of the counter, and the load
pin loads the counter synchronously.
The symbolic product term description
of this counter is

.0x0load a0 x0
0:53:3
.0x1load al x0 x1
3:34:138:13
.0 X2 load a2 x0 x1 x2
3:312:29 16:25 16:21
.0 x3 load a3 x0 x1 x2 x3
3:328:61 32:49 32:41 32:37
.0 x0@d clk
1:1
.oxl@d clk
1:1
.0x2@d clk
1:1
.0 x3@d clk
1:1

This takes the form

.0 output_nodefoptional attribute}
input_nodes

followed by product terms (in decimal
[sic]) as value:mask. Value and mask
are bit vectors with the least significant
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Figure 2. Programmable device having a combinatorial element followed by a control
section (a). The control section may be a buffer (b), inverter (c], tristate device (d),

clocked driver (e), or a combination (f).

bit corresponding to the first input_
node and the most significant bit cor-
responding to the last rightmost in-
put_node. A zero in the mask portion
indicates a don't-care option; a zero in
the value portion means “complement
that input.” The mask:value product
terms are natural for manipulation
such as using Quine-McCluskey® mini-
mization, Shannon factorization, or if-
then-else partitioning.** Even so, the
sum-of-products representation for a
counter gets out of hand very rapidly
for large counter sizes.

Optional attributes pass information
(such as clocked element declarations)
to the other fitters. For example, @d de-
clares a D flip-flop while @t declares a
toggle flip-flop. The use of toggle flip-
flops often reduces the number of terms
required for counter-like sequential log-
ic. Figure 4 displays the output for a 4-bit
counter using toggle flip-flops.

Note how the number of x3 terms has
been reduced from five to three. The fit-
ter interprets the @t operator (and any
other optional attributes).

The job of a fitter is to take the sym-
bolic product term input and produce
product terms acceptable for any one
of numerous devices:

m Part, for common programmable
devices

m Npart, for the AMD MACH devices

m Actand Act2, to compile into Actel
library gates for the ACT 1 and ACT
2 families

Four-bit counter
Input1 | a0 x0 | Output 1
Input 2 | at x1 [Output 2
Input4 | a2 x2 | Qutput 4
Input 8 | a3 x3 | OQutput 8
Load | Load
Clock | Clk

Figure 3. A 4-bit counter description.

a XNF and XIL, to compile into Xilinx
intermediate form for the 3000 and
4000 series parts.

Part. This program tries to squeeze
product terms into a set of programma-
ble parts of one particular variety. Part
starts with a single instance of the target
device and attempts to assign output
functions to the outputs. If it encounters
an output function that can't be as-
signed, Part considers a second device.
It continues assigning outputs and,
when necessary, adding devices until
all output functions are assigned.

Part uses the Assign function to return
Fit, a measure of how well a set of output
functions fit on a particular device: the
smaller its value, the better the fit. Assign
first assigns the output signals by calling
a procedure Find(terms, type) that looks
for pins of a given type and a given num-
ber of terms. The bits of type map to
functional requirements such as input,
output, inverting, noninverting, clocked,
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.0x0load a0 x0
0:12:64:6
.0x1load al x0x1
3:114:59:11
.0x2 load a2 x0 x1 x2
3:1912:1317:19
.0x3 load a3 x0 x1 x2 x3
3:35 28:29 33:35
.0 x0@t clk
1:1
.0x1@tclk
1:1
.0x2@t clk
1:1
.0x3@t clk
1:1

#x0dependson load, a0, x0
#productterms..

#x0 '@t (toggle 'ffcldck}atﬂtribute ;

Figure 4. Four-bit counter with toggle flip-flops.

and so on. Declarations supply the cor-
responding properties of the pins of a
particular device. Find selects a pin of
the right type that uses the least number
of available product terms. For an out-
put-only pin, Find will prefer an output-
only node over one that can be an input
and/or an output. Often Find sends both
the product terms for a function and
those for its complement to the fitter. In
this case Assign selects from the possi-
ble output polarities. If an output can-
not be assigned to the device at all,
Assign returns a special large value.
Each output signal carries with it in-
puts that must also be assigned (via
Find). These inputs can feed into the
combinatorial (AND/OR) array or serve
as special-function inputs (clock, en-
able, clear, or set). If it can’t assign all
the input pins, Assign returns a positive
number proportional to the number of
missing inputs. Otherwise, Assign re-
turns a negative number decreasing
proportionally with the number of ex-
tra pins. By weighing deficits more high-
ly than surpluses, the minimization of
the total fit of the device results in a
search for an acceptable configuration.
Consider two outputs 01(i0,i1,i2) and
02(10,i2). Assigning them to separate de-
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vices would require a total of five input
pins. If they were both on the same de-
vice, i0 and i2 could be shared, requir-
ing only three input pins. If the initial
placement leaves input pins unas-
signed, Part uses the Kernighan-Lin®’
min-cut graph-partitioning algorithm to
minimize the number of unassigned
pins. The algorithm successively selects
and swaps pairs of outputs on separate
devices so that the total fit is reduced.

If Part is successful, it generates sev-
eral files. Each device contains a pin as-
signment file and a product term file.
Part also generates a graphic schemat-
ic file showing the connectivity of the
devicesin the case of multiple devices.

The output of Part for the 4-bit
counter on a 22V10 would be

X 22V10
0146514
3:30:52:6
01563142315
3:312:2916:21 16:25 14:30
18:22 18:26
0226214231522
3:328:6132:37 32:41 32:49
30:62 34:38 34:42 34:50
.023641423
3:38:134:1310:14 6:14

Notice how the pin numbers have
been assigned to each of the output
product terms where the symbolic
node names used to be. In the case of
inverting outputs, some devices provide
feedback to the combinational array be-
fore the inversion, so that the product
term feedback must be inverted.
Noninverting outputs are left alone.

Npart. Many common programma-
ble devices fit within the scope of Part
and the Paddle description language.
Some devices have multiple blocks that
look like conventional programmable
devices connected through program-
mable, on-chip interconnection net-
work devices called complex PLDs.
Typical of these devices is the MACH se-
ries. The many trade-offs between
speed and complexity limit the inter-
connection network in size. Therefore
the particular signal assignment dictates
whether or not a device will fit.

On one hand, these devices look like
multiple, simple programmable devices
and fit into the scheme of Part particu-
larly well. On the other hand, the con-
straints of the interconnection network
prohibit a simple language description.
A new program Npart supports such de-
vices. It accepts that the blocks are part
of a larger group (the devices them-
selves) and, like Part, assigns outputs to
blocks, minimizing the number of in-
puts and hence the interconnections
between the blocks. Doing this first step
well profoundly affects the success of
the succeeding signal assignment/
interconnection step.

Once the outputs have been as-
signed to their respective banks, Npart
must assign the signals to actual pins or
internal nodes and configure the inter-
connection network. As with Part, each
signal receives a bitmapped value, with
the more constrained requirements be-
ing assigned to higher order bits. For ex-
ample, the most significant bit denotes
frozen signals (that is, preassigned
pins). Clock inputs that must be as-
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Figure 5. An AND/OR array.

signed before regular inputs (because
they must be assigned to dedicated
pins) use the next highest order bit.
Npart sorts the signals by the bitmap val-
ue in decreasing order and then assigns
them, ensuring that the most difficult
pins are assigned first.

Npart assigns a signal by considering
each unassigned node of matching
type. The heuristic used in selecting a
particular node follows: Each output
node may be connected to a set of in-
put nodes distributed over the banks of
the switch. These sets of nodes may in-
tersect since output nodes may share
inputs. This implies that connecting an
output to some inputs will reduce the
size of any set containing those inputs.
The number of degrees of freedom of
an output node is defined as the num-
ber of input nodes that may be reached
by a given output node. The total num-
ber of degrees of freedom of all the out-
put nodes serves as a metric, and nodes
are assigned such that this metric is
maximized.

As an example, suppose we have n
outputs, each capable of being con-
nected to m inputs. Initially the number
of degrees of freedom would be n*m.
Selecting any output reduces this num-
ber by n plus the number of instances
where the inputs to which the output is
to be connected appear as possible des-
tinations for the other outputs. If possi-
ble when the next pin is selected, it will
come from one of the outputs whose in-
put set has been reduced.

As nodes are assigned, if a signal can-
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not be connected, Npart backtracks by
removing assigned nodes one by one,
trying to reassign the problem signal. If
successful, Npart reassigns the removed
signals. This backtracking may be re-
cursive to a depth limited by a com-
mand line argument. Though the
default search depth is set to two, diffi-
cult cases may use values of three.
Search depths larger than three have
long runtimes and don’t seem to be
very effective.

The previously generated pin assign-
ments can be read into both Part and
Npart. These pins are frozen so that
wiring changes are not required. Both
tools attempt to partition the product
terms within these constraints, assigning
unfrozen pins and buried outputs. It is
possible that additional functions would
not fit into the device with the new pin
restraints. This would be a disaster since
pins will either have to be moved (there-
by resulting in numerous wiring
changes) or new devices introduced
(into an already full circuit board).

Xpal. Given the output of fitters like
Part and Npart, the next step is the com-
pilation of logical terms into a map of
fuses that describes the connections of
the AND/OR arrays. The fuse numbers
are output in JEDEC standard fuse for-
mat, the input accepted by most device
programmers.

Since the world of programmable
parts is ever expanding, we designed
the Paddle (Programming Array Device
Description LanguagE) language as a
side input to Xpal. Paddle’s underlying
model combines a set of AND/OR ar-
rays and an optional array of fuses.
Figure 5 illustrates an AND/OR array.

The input to an AND/OR array is a set
of nodes; the output is also a set of nodes.
A node can be externally visible (such
as a pin), or it may be an intemal node.
The buffered or inverted version of a
node is called a line; a fuse controls a
line’s intersection with the input term of
the OR. The collection of fuses over a set

of input and output nodes is an array.

A device could have multiple
AND/OR arrays. Examples of such de-
vices include the MACH patrts, the
Cypress 7C361 finitestate machine con-
troller, and the Signetics Macrologic
(PLS 501, 601, and 701) parts. Every ar-
ray declaration therefore must be fol-
lowed by a symbolic name, which also
helps Xpal to give useful error messages.
Each array must also have an offset de-
claration, which permits the array to be
placed anywhere in the fuse space.
Next, the declaration of input and out-
put nodes must be given. Note that in
most PLDs, input lines come in both
complement and idempotent flavors
and are provided courtesy of the buffer
on the input pin. Paddle therefore con-
tains a declaration for doubling a given
set of nodes, with either the comple-
ment or idempotent line first.

Fuse arrays let Paddle declare special
fuses that some programmable parts of-
fer. For example, the 22V10 contains
fuses that set the polarity of the output
pin, whether the output is latched or
combinatorial and so forth. Since these
fuses are not organized in an AND/OR
array, Paddle just permits a one-to-one
mapping between artificial pin (exter-
nal node) numbers and fuse numbers.

Compilation of product terms to fuse
numbers. Given a product term for a
particular output pin, Pal verifies that
the number of input terms is less than
the maximum number of terms on that
output pin. If Part or Npart processed
the input to Xpal, this is not a problem
since Part generates properly parti-
tioned equations.

Next, Pal locates the beginning of the
AND/OR array in fuse space. Figure 6
shows a compilation of a given output
pin.

Pal calculates the fuse number for
each implicant by adding the pin num-
ber to the term number of the output
pin. This is multiplied by the maximum
number of input nodes per line to get

1EEE DESIGN & TEST OF COMPUTERS



foreach term do {

output_line = (term number+ line number of outputpl ‘

max width of fuses per line; -
value = implicant[term].value;:
foreach bit_number do {
bit_mask =1 <<bit; ,
if don’t care, thenloop; - -
pin=input_pin[bit_number]; :
input_line = input_line[pin]; -

pin_flags=flags[pin}; /* perpin ﬂags*] S
if (value & bitmask) { /* don’t complement */

if (pin_flags & COMPLEMENT._1S1 0

input_line++; /* Jéempotem on nd

} else /* complement */ { -

if ((pin_ ﬂags&COMP!..EMENT 151))

mput ime-H-

}

} /* end foreach bxtmumber */
}/* endforterm*/ . .

Figure 6. Compilation of an output pin.

the starting fuse number of the first line
in the output node.

Each input variable has a binary val-
ue and a mask that says whether the
variable is used in the product term.
Assuming the pin is really an input pin,
Pal checks the input for a complement
and the device for an available input
line. Assuming an input line is available,
Pal accepts the fuse number to be the
array offset plus the first line fuse (just
calculated) plus the input line number.
Pal sets this fuse to the default value
(don’t blow).

Note that the fuse value is not output
at this time; it is saved. The final act of
Xpal is to write and output the array of
changed fuses. This minimizes the out-
put size by concatenating adjacent al-
tered fuses and consequently reduces
downloading time to the programmer
over the slow serial line.

Xpal at work. Using the 4-bit counter
example, Xpal takes the just-mentioned
Part output and Figure 7’s Paddle defi-
nition of a 22V10 device (22 inputs, 10
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zero_fuse(input_] hne-;aoutpm:lme-t-array :mg

“versatile” outputs) and generates a
fuse map. (Readers interested in a sam-
ple Paddle description should contact
Mark Kahrs at the address at the end of
this article.)

This definition omits the polarity and
architectural fuses. The name following
the Array declaration is unique (in this
case, it is and_or). The notation
Complement+ means that an input line
to the and_or array is complemented
with the idempotent line first. The out-
puts take the form node:maximum,
where Node is the node number, and
Maximum is the maximum number of
inputs to the OR gate. The fuse number
of aline can be set to an arbitrary value
with an =; otherwise the line number is
set to the maximum value from the pre-
vious line plus the fuse number of the
first line of the previous node.

In the 4-bit counter example, con-
sider the fuses for output pin 14, which
has three inputs, pins 6, 5, and 14. The
line number of the output pin is 123, the
maximum number of inputs of the fuse
array is 22 (the number of inputs) x 2

NS22V10=AM22V10=22V10 {
- package “DIP2403"
macrocell typical {
enable: 100,
clocked : 300,
invert : 200,
reset : 400,
:set;: 500,
ciock 600

declare {
internal {
reset {25}
set{26}

cexternal {
inputs { 1..11, 13}
clock {1}
clocked enabled macrocell
typical {14.23}

ground {12}

- supply {24}

}

array and/or {
inputs complement+ {
123, :

2 22

10, 14,
L 131
"}
outputs{ ;
- 251, - %asynchronous
o reset :
el 18
£i 000

T4,

14:8;:

26=131 % synchronous
preset

Figure 7. Paddle definition of a 22V10.
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Figure 8. Primitive Actel cell and XOR
gate.

load a2 x0 xI x2
0 0 0 0 1 1 | Value
0 0 0 1 1 |mask
1 0 1 1 0 0
1 1 1 0 1
2 1 0 0 o0 0
1 1 0 0 1
3 1 0 0 0 0
1 0 1 0 1

Figure 9. Internal binary value and mask
fields.

(including complementary inputs). The
initial output fuse line will be 123 x 22 =
2,706. The first term has a mask of 3 and
avalue field of 3. For bit 0, the selected
input line would belong to pin 14 (a
feedback term). The input line for pin
14 is 19, therefore the fuse number will
be 2,706 + 19=2,725. This fuse will be
set to the “connect” value (that is, don’t
blow the fuse), and the next bit in the
value field (for pin 5) will be checked.
Pin 6 is omitted since its mask bit is zero.

Actel FPGAs. Actel ACT 1 FPGAs
contain up to 547 primitive elements
consisting essentially of three 2:1 mul-
tiplexers. After configuration, antifuses
that can only be programmed once in-
terconnect these primitive cells. By
comparison, the Xilinx FPGAs are
SRAM based (and therefore repro-
grammable), coarser grained, and
more expensive. Figure 8 shows one
possible configuration of a primitive
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cell to form an exclusive OR gate.

Rather than allow customers to deal
directly with the primitive cells and in-
ternal routing, Actel provides a netlist
interface to a library of preconfigured
cells such as gates, flip-flops, multi-
plexers, and buffers. Actel proprietary
software automatically places and
routes the cells, and for each library
primitive, chooses an appropriate con-
figuration of the actual primitive cells
(often among several possibilities).

This last point is very important for
two reasons. First, placement of the cell
and the routing of nodes to it influence
the choice of configuration for a primi-
tive cell. Second, the load presented by
an input to a library cell is nontrivially
related to the number of connections
one would use to create such a cell out
of a primitive.

For example, while a two-input XOR
built from the primitive cell needs more
than one connection to at least one of
the inputs, the Actel library XOR func-
tion specifies only a single load for each
input. So at least we get something in
return for not having complete control
of the device.

Tree building. Act’s first task is build-
ing data structures and handling cross-
references. For example, the following
four lines define the x2 bit of the
counter in the toggle flip-flop example:

.0 X2 load a2 x0 x1 x2
3:1912:1317:19

.0 x2@t clk
1:1

These two definitions are linked by
their mention of the same output vari-
able; the parser duly notes this and as-
signs the second set of product terms to
the clock input of the toggle flip-flop
called for by the @t operator. Figure 9
shows the internal binary value and
masks fields.

Factoring. From an array of product

terms it is a simple matter to discover
which if any inputs are common among
them. This set is the AND of all of the
masks in the array.

While computing the composite
mask, the code also determines
whether both senses of a common in-
put appear in the array. This result is the
difference between factoring the array
as an AND or as a MUX of the selected
input. At present, Act factors out non-
multiplexed inputs first.

If no input is common to all product
terms, Act chooses the most frequently
referenced one to partition the terms
into two sets. Note that the general case
result OR(d,MUX(s,a,b)) is equivalent
to the ifthen-else DAGs (directed
acyclic graphs) described by Karplus.*>

The factoring process proceeds in
divide-and-conquer steps. After an in-
put x is selected for factoring, Act di-
vides the array into multiples of x and
Ix. Before recursing to factor the result-
ing subarray(s), Act checks them to see
if one is the complement of the other.
If so, Act returns XOR, and only the
smaller subarray needs to be factored.

The XOR test is exhaustive yet inex-
pensive. When two expressions are not
mutual complements, they are typical-
ly discovered almost immediately, usu-
ally during comparison of the input sets
(the ORs of all product term masks).
Complete walks of the state space only
occur on successful tests. Discovering
all the XORs in a 20-bit ripple-carry
counter takes about one second on a
25-MHz R3000.

Balancing. Once the procedure en-
counters a solitary term or an array of
terms that it can’t factor, it builds the
AND/OR tree. If necessary, Act builds
OR trees from subtrees of four or less
elements, and AND trees from subtrees
of three or less elements. This ensures
that the root of any subtree can be rep-
resented as at most one Actel cell.

Act builds AND trees in a canonical
form. The Actel library defines, for ex-
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ample, four variations of three-input
AND gates: AND3, AND3A, AND3B, and
AND3C. These gateshave 0, 1,2,and 3
inverted inputs (bubbles, in the lan-
guage of logic design). AND trees are
built with bubbles starting from the left.

Height balancing and canonicaliza-
tion are both properties of the trees as
they are built. Once constructed, trees
are never rewritten.

Common subexpressions can be de-
tected during the tree construction
process by checking to see if a node of
the right type with its parameter list al-
ready exists before creating a new
node. If it exists, Act returns a pointer
to the existing node. Canonicalization
and luck serve to identify the vast ma-
jority of common subexpressions. Very
complex expressions reduce this effect.

Before matching, Act again scans
each tree from bottom up to compute
an approximate fan-out for each node.
Every time a node is visited, Act incre-
ments its fan-out count and decrements
the fan-outs of each of its child nodes.
If a node’s fan-out exceeds some
threshold, Act will insert a buffer tree
between it and its uses. Fan-out counts
are approximate because Actel library
gate inputs do not always have unit
loads, and gate assignment follows the
fan-out computation.

Matching. Act uses tree matching®®
to select macros from the Actel gate li-
brary. Like Dagon, ' Act defines the tar-
get architecture in Twig,!! a language
for generating code generators. How-
ever, unlike Dagon, Act automatically
generates the Twig specification from
a list of one-line definitions of Actel li-
brary modules. For example, the AX1
primitive is

AX1=(A&B)AC
compiled into

OAXIABC
2:74:65:5

from which Act constructs
AX1 =xor(C,and(not(A),B))

and asimple Awk program turns into a
Twig pattern/action definition

e: xor(and(not(e),e).e)
{TOPDOWN;}

tDO($%3$);
tDO($%2$);
tDO($%1$);
func($$,“AX1”,3,“Y" “A”",
“B”,*C");
¥

Briefly, the Topdown directive tells
the pattern matcher to begin at the top;
Do follows the children, and Func
emits the call to the Actel cell. This at-
tempt to express Twig patterns in the
same way that incoming trees will be
built has been moderately successful.
A stronger sense of canonicalization
might help here.

Once a tree is matched, Act walks
the tree top-down, maintaining a stack
of identifiers and Actel gate descriptors.
After all the leaf nodes have been tra-
versed, at least the proper number of
tree identifiers will have been either
pushed or left on the stack. If netlist out-
putis desired, Act prints the results and
pops the stack, leaving the tree identi-
fier of the matched subtree on the
stack. If human-readable output is de-
sired, Act pushes the tree identifier on
the stack without popping the tree
identifiers, and a recursive function
prints a list representation of it when
the matcher returns.

Act at work. In the earlier 4-bit
counter example (not using toggle flip-
flops), Act constructs the following tree
from the input terms:

x0 =mux(load,'x0,a0)
x1 = mux(load,xor(x1,x0),al)
x2 =mux(load,xor(x2,and

(x1,x0)),a2)
x3 = mux(load,xor(x3,and
(x2,x1,x0)),a3)

Note the MUXes and XORs discov-
ered from the sum of products input
form. Including 1/0O buffers and flip-
flops, the complete description for this
circuit in an Actel device is

clk = CLKBUF(cIK)

x0 = BIBUF(DFM4(load,INV
(x0),a0,clk,0),1)

load = INBUF(load)

a0 = INBUF(a0)

x1 = BIBUF(DFM4(load XOR
(x1,x0),al,clk,0),1)

al = INBUF(al)

x2 = BIBUF(DFM4(load,XOR(x2,
AND2(x0,x1)),a2,clk,0),1)

a2 = INBUF(a2)

x3 = BIBUF(DFM4(load,XOR
(x3,AND3(x0,x1,x2)),a3,
clk,0),1)

a3 =INBUF(a3)

The DFM4 macro cell includes both
a multiplexer and a D flip-flop. Twig's
dynamic programming algorithm nat-
urally finds such combinations. At pre-
sent, however, the ordering of the costs
do not reflect the discovery of common
subexpressions or the subsequent fan-
out computation.

The Act2 library defines classes of
combinational and sequential mod-
ules that can be combined into a sin-
gle module. Modifying the Twig
specification to take advantage of this
property took a couple of hours, and
the resulting Act2 program worked the
first time.

XIL. XIL and XNF generate the Xilinx
Netlist Format from symbolic product
terms. In both cases, the majority of
work goes into matching product terms
of flip-flops and buffering with that of
the Xilinx Netlist Format. In addition,
XIL does Act-ike tree factorization be-
fore output.



Table 1. Act fitter results.

Circuit  Inputs Outputs Terms Act2 Mis_pga Actlblocks) Actbuffers)
Duke2 22 29 87 164 198 349 50
Bw 5 28 87 64 80 100 32
Clip 9 5 167 62 62 113 13
Rd84 8 4 256 63 72 74 1"
5xp1 7 10 75 48 53 44 15
Misex] 8 7 32 24 — 26 14
Misex2 25 18 29 42 — 65 42
Apexé 135 99 452 302 — 408 372
Apex7 49 37 176 108 — 121 106
Rot 135 107 691 427 —_ 414 264

After implementing a variant of
Woo's visible edge algorithm!2 for pack-
ing four-input lookup tables, we dis-
covered that Xilinx tools for the 4000
series parts did quite an excellent job
of bin packing. They worked within the
additional constraints of the arrange-
ment of four-and three-input lookup ta-
bles in these parts, so XIL internal trees
are output as binary trees.

Discussion and future work

Xpal and Paddle are a success. Users
can define new devices in the time it
takes to decipher the manufacturer's
fuse maps and type them in. The hard-
est task is extracting the fuse maps from
the manufacturers in the first place,
since manufacturers regard fuse maps
as proprietary knowledge. Paddle’s
main fault is that it lacks any knowl-
edge about the internal semantics of
the devices it describes. It assumes that
the designer knows how to map a de-
sign onto the internal fuse numbers
and leaves this to earlier programs in
the design chain. It also accepts node
numbers numerically instead of sym-
bolically. This is partly historical and
partly related to the limited knowledge
Xpal requires from the programs up-
stream. In any event, it has proven to
be of little practical consequence.

Before the introduction of Part (and
Npart), designers were often confront-
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ed with designs that didn’t fit into the
given devices. Part demonstrated that a
min-cut algorithm could execute ef-
fective distribution of equations to
parts. Part’s extension to Npart lets de-
signers combine numerous equation
files into one file and thereby minimize
board space.

Most current work in logic synthesis
is based on multilevel optimization.!3
The two-level logic form used by Act
suffers by comparison as the logic
width increases. Table 1 lists the results
when the described fitters are run us-
ing the LGSynth89 benchmarks.*

Compared with the number of gates
reported in Ercolani and DeMicheli,'s
Act can be a factor of two larger. At
least two things are at work here. 1)
Input to Act is not processed by a mul-
tilevel optimizer such as MIS.”® 2) Act
doesn't try very hard to find common
subexpressions. Any common expres-
sions it finds are usually localized (for
example, an expression for a clock en-
able common to an entire register) and
any more effort put into sharing subex-
pressions might adversely affect rout-
ing. Note that Ercolani and DeMicheli
does not consider the effect of loading
or fan-out.

Additionally, Act runs extremely fast.
All of the examples here have been run
in less than one second on an R3000-
based multiprocessor. For most of the

applications encountered thus far in
our research environment (mostly ran-
dom or interconnection logic), the
width of typical logic is narrow, and the
output code from Act appears to match
well with the Actel architecture.
Unfortunately, the well-known Logic
Synthesis benchmarks are wide (for ex-
ample, the alu4 circuit has 131 product
terms!) and do not show our tools at
their best.

WE’VE FOUND TWO=LEVEL LOGIC {0
be convenient in this application, and
we've been pleasantly surprised to
achieve such utility from such a well-
worn tool set. However, the use of hi-
erarchy in the source language would
reduce the pressure on the code-gen-
eration problem as well as allow access
to macro libraries supplied by FPGA
manufacturers.

Most current structured hardware
description languages like Verilog and
VHDL emphasize control structure in-
stead of expressions involving fields of
bits. Until such languages include con-
structs for bit-field manipulation, inter-
esting bit manipulations will be
difficult.

The FPGA industry is in constant
flux. Compared with table lookup ar-
chitectures like Xilinx and two-level
PAL derivatives such as MACH, the
Actel architecture is a relatively fine-
grained one. These architectures all
seem well in hand and are subjects of
ongoing work. However, at least one
upcoming technology, Quicklogic, has
an even finer grain and will further
point out the need for hierarchv and ef-
fective code generation.
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