IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10. OCTOBER 1992 1227

Silicon Compilation of Very High Level Language

Mark Kahrs, Member, IEEE

Abstract—This paper concerns the design and implementa-
tion of a compiler for two very high level languages. The first
language is a set language similar to VERS and SETL. The sec-
ond language is a novel signal processing language. The com-
piler uses data flow and type information to constrain possible
choices before choosing a possible implementation. Heuristic
search is then used to choose from competing concrete imple-
mentations of abstract data types. Constraint propagation is
used at every selection step to remove incompatible configura-
tions from the search, thereby reducing the search space con-
siderably. A microprogram control store is automatically gen-
erated. The output of the compiler is a parts list, a net list of
module interconnections, and the fields of the control store.

I. INTRODUCTION
A. Goals

HE TERM “‘silicon compilation’” was coined by Jo-

hannsen [1] in 1979, and has come to mean almost
any design system that aims to produce silicon from any-
thing other than mask data. Gajski, Dutt, and Pangrle [2]
further divide silicon compilation into three categories:
structural, behavioral, and intelligent silicon compilation.
Structural compilation (sometimes called *‘silicon assem-
bly’’ [3]) refers generally to layout description given basic
modules. Silicon assembly makes the placement and rout-
ing easier but does not hide behavior from the user. Be-
havioral compilation aims to produce a circuit that has the
same behavior (mapping of inputs to outputs) as the input
program. Past work on behavioral compilers has concen-
trated on compiling ‘‘algorithmic’’ input languages like
Pascal [4], [5] or hardware description languages like
ISPS [6], [7]. While specifying algorithms at this level
level is comfortable for some, it can expose many details
of machine design. For a unknowledgable user designing
an application specific integrated circuit (ASIC), this is
unreasonable. This is due in part to the description level
of the input language. Very high level languages can hide
all of this complexity in the system by forcing the user to
specify the algorithm at a very high level via abstractions.
The last category of Gajski er al., the intelligent silicon
compiler, represents the end goal of silicon compilation
research. Intelligent compilers will use multiple design

Manuscript received August 23, 1988; revised September 5, 1991. This
work was supported in part by the National Science Foundation under Grant
IST-8012418 and under Grant MCS-81004008, and by DARPA under Grant
N00014-78-C-0164. This paper was recommended by former Editor M.
Lightner.

The author is with the Department of Electrical and Computer Engi-
neering, Rutgers University, Piscataway, NJ 08855-0909.

IEEE Log Number 9200549.

styles (instead of specializing in one style), evaluate de-
signs in progress, and perform refinements.

This paper describes a system that is halfway between
a behavioral compiler and an intelligent compiler. It com-
piles programs written in a very high level language into
a description of module interconnections. The modules
are chosen from a user supplied library. They are pre-
sumed to have been designed using lower level design
tools such as lower level silicon compilers, assemblers,
and graphic editors. The final output from the compiler is
a net list of module interconnections as well as a parts list
and a listing of the microcode fields for the machine.

B. Very High Level Languages

As stated above, an unknowledgable silicon compiler
user should be able to create a circuit without specifying
all the details of algorithmic implementation. Earley [18]
identified three criteria for the design of (very) high level
programming languages. They were as follows:

1) ability to write a program in a clear and concise
manner,

2) ability to ignore the implementation issues and con-
centate on the semantics and correctness of the al-
gorithm,

3) ability to postpone design decisions on seemingly
unrelated portions of the program until needed.

Of these three points, the second is of critical interest
because the user of a high level silicon compiler should
ignore the implementation issues of allocation, schedul-
ing, and optimization and concentrate instead on the sys-
tem design issues.

Past work in very high level languages principally has
been done in languages with abstract types such as sets,
tuples, and relations (an example of such a language is
SETL [9]). The use of high level abstract types intention-
ally obscures common programming details such as
pointer chasing, memory allocation, structure formation,
and implementation selection.

Two very high level languages were defined: ““YASL™’
(Yet Another Set Language) and ““CLASP’’, a very high
level signal processing language [10]. YASL resembles
SETL.: it includes high level types and the associated it-
erators, while CLASP describes signal processing algo-
rithms using filters and transforms.

C. Compilation Strategy
The compilation process can be divided into four basic
stages, shown in Fig. 1. The first stage is analysis, in-

0278-0070/92$03.00 © 1992 IEEE

1228

Program
Analysis

lﬂmmwb

Graph

library .
Matcher [

l decorated flow graphs

Search
and requirements
Constraint
Evaluator
lmamkﬁm
Machine
Generation
l data path & control store

Fig. 1. Compiiation process.

cluding control and data flow analysis as well as type de-
termination. The second phase is the matching of the data
flow graph with the data flow graphs in the library de-
scription. The third phase searches through the possible
matches for a covering of the data flow graph while con-

module TouchToneDecoder

-- The now classic touch tone decoder,

as done originally

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

stantly evaluating constraints at all levels. The fourth and
final stage generates a machine by generating a control
store as well as the data paths.

The compiler analyzes the input program for data flow
(data transfer between storage and computational ele-
ments) and control flow (transfer of control from one
statement to another). The decomposition of an input pro-
gram into data and control flow has its roots in the anal-
ysis of programming languages (see [11]). It has also been
used by many in silicon compilation, beginning with Snow
[12] and including the CADDY/DSL [13] group and the
DDS [14] system. The program is also examined for types
and other properties. These properties are attached to the
data flow nodes of the program. Given the data flow graph,
some sort of optimization would be useful (for example,
performing algebraic simplification). However, this step
can be omitted with the subsequent loss of efficiency. The
data flow graph is ‘‘matched’’ with the data flow graphs
of the parts in the parts library. This differs from other
approaches, including greedy allocation [15], clique par-
titioning [16], critical path allocation [17], and direct
compilation [13]. For example, consider the following
CLASP program.

in1963 by

-- a group in Bell, then done again in 1968 by Jackson et al. and
-- done again by Lyon.

declare tuple of integer : lowerBand, upperBand;

declare tuple of integer : lowerBandCenterfrequencies;

declare tuple of integer : upperBandCenterFrequencies;

declare tuple of integer : detection;

declare integer : result; -- output from hum filter (and iteration variable)
declare integer : bandLimit; -- bandpass (and Llowpass) band Llimit
declare integer : input; -- input from the A/D

declare integer : output; -- output from the module

declare filter from 180 to INFINITY noHum; -- Line hum filter
lowerBandCenterFrequencies := [697, 770, 852, 941 1 ;
upperBandCenterFrequencies := [1209, 1336, 1447, 1663 1 ;

result := noHum(input);
lowerBand := filter result
upperBand := filter result

from DC to 1070

detection := phi;

foreach centerfFreguency
detection := detection plus

filter HalfWaveRectifier

filter LowerBand

from 1070 to INFINITY :

lowerGroupFilter;
upperGroupFilter;

in lowerBandCenterFrequencies do

from centerFrequency-bandLimit
to centerFrequency+bandlimit
with stopband attenuation to 16 db down
: lowerBandPass)

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

1229

Fig. 2. CLASP data flow graph.

from DOC

to centerFrequency+bandbLimit

detectLowGroup;

foreach centerFrequency
detection := detectionplus
filter HalfWaveRectifier(
filter upperBand

in upperBandCenterFrequencies do

from centerFrequency-bandLimit
to centerFrequency+bandlLimit
with stopband attenuation of 16 db down
upperBandPass)

from DC

to centerfFrequency+bandLimit

detectUpperGroup;

in detection do
LevelDetect(result)

foreach result
output :=

end.

This program is a touch tone receiver written in the lan-
guage ‘““CLASP’’. The input library for CLASP contains
descriptions of various signal processing primitives, in-
cluding filters and miscellaneous functions like rectifiers,
limiters, and detectors.

This will be analyzed by the flow analysis code and will

produce the following data flow and control flow graphs
shown in Figs. 2 and 3, respectively.

The compiler tires to find a complete covering of the
data flow graph. There can, of course, be many such cov-
erings, since there can be different matches for the various
parts. For example, in the above CLASP example, each

1230

Fig. 3. CLASP control flow graph.

filter will be matched by all the filters in the library (But-
terworth, Chebychev, and so forth). A separate phase,
called ‘‘binding,”’ evaluates the filter parameters and cal-
culates the required filter order for the implementation.
A search phase is used to find optimal combinations of
the subgraphs. At each stage of the search, local and
global constraints are evaluated. This is reminiscent of
the Emucs [15] step by step evaluation of costs. At the
conclusion of the search, a microcoded machine is gen-
erated. The control store is generated from the control flow
graph much as [13] did (concurrently with this paper).

D. Paper Overview

Preliminary analysis of the input program is assumed
to have been performed. The matching phase is described

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

first; here, the data flow graph of the input program is
matched against the library. The next section describes
how constraints will be used during search to cut the
search space. The search process is described in detail,
followed by a section on how to generate a machine from
the resulting information. Lastly, the implementation is
described, along with conclusions and directions for fu-
ture work.

II. MATCHING

Implementation choices are made by searching through
a library of template descriptions that describe the behav-
ior (semantics) of the available modules. The object of
this search is to match the modules with parts of the ma-
chine ‘‘generated’’ by the input program. The matcher
described in this section matches the data flow subgraphs
of the library modules against the program data flow
graph. Matching uses a table of correspondences from data
flow nodes to possible implementations that use that node.
It tries to match the data flow subgraphs of the implemen-
tations in the library, starting from each node in the data
flow graph. Since the library modules can be parameter-
ized, a process called ‘‘binding’” is used to instantiate the
library templates. After binding, the library templates
(now called instances) are ready to be evaulated for time
and area bounds. '

A. Matching the Library

The problem of choosing implementations begins by
matching the library with the program. The data flow
graph provides a reasonable representation for the matcher
to work with because of the following:

1) A data flow graph is language independent, thus
isolating the definition of the library from the lan-
guage.

2) The data flow graph ‘‘fits’’ the problem of matching
parts of the machine with parts from the library.

3) Data flow graphs can be easily transformed into data
paths. This is in opposition to tree matching, where
matched trees must still be transformed into circuits
(i.e., graphs).

In its purest form, subgraph matching is NP-complete.
However, here the problem is more constrained: each
node in the data flow graph has a label. These labels allow
the graph matcher to run in linear time. Assuming matches
are found, instantiation of the successful matches follows.
Note that failure to match every node in the data flow
graph is a serious failure, since this indicates that the li-
brary fails to cover the data flow graph of the input pro-
gram. Currently, such failures are reported to the user and
the program continues.

The library entries are parameterized templates because
the modules are often of variable size (where the size de-
pends on the values of bound parameters). For example,

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE 1231

the size of a bit vector representation of a set is dependent addition assignment use
on the maximum number of items in the set. Instantiation

binds properties in data flow nodes to parameters in the Q
library specification for the matched modules. After bind- o @

ing, it is possible to evaluate each instance and begin
searching for the set of instances that will satisfy both the

design goals and semantics of the input program. @ ° ’ @

B. Graph Matching

The matcher tries to match every subgraph of each @
module description in the library with the program data
flow graph for each node in the graph- The language used Fig. 4. Data flow subgraph of the parallel bit vector module.

to specifiy the match graph is nearly the same as the lan-
guage used to generate the data flow graphs.

1) Library Representation: A module may have more than one data flow subgraph because a module may compute
more than one result. This is the case with many modules that have control signals that dictate which function is
computed. For example, a set representation may have size, add, delete, and membership functions in the same
module. Therefore, it follows that the library representation should reflect these different functions.

Different functions for a given module are described in terms of the control signal bindings. So for each binding of
the control signals of a module, a data flow subgraph characterizes the behavior of the module, given those control
signals. For example, the representation of the parallel bit vector set representation in the example has three functions:
addition, assignment, and use. The data flow subgraphs of this module are shown in Fig. 4.

These are represented in the library as follows.

ParallelBitVector

(variable n)

(inputs (inputData n) (clock 2) (operations 2))

(outputs (outputData n))

(control (operations 2))

(properties
(inputData parallel integer) (outputData parallel integer)
(clock clock) (operations control)

(area
(width (times 20 n))>
(height 100)

(time
(delay (lookup delay))
(period)
)
(power (times 25 n))
(parts
(use
(control (operation 0))
(graph (attach-tail (port outputData (node IDENTIFIER SET INTEGER))
(node ANY)))
(timing (delay 1))
(bind (n outputbData (second range) range-size-in-bits))
)
(assignment
(control (operation1))
(graph (attach-tail
(node ANY)
(port inputData (node IDENTIFIER SET INTEGER))))
(timing (delay 1))
(bind (n inputData (second range) range-size-in-bits))

1232

)
(insertion

(control (operation 2))

(graph
(loop)
(attach-tail

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

(join (node +)

(Loopnode)

)

(port inputData (node ANY))

(node IDENTIFIER SET INTEGER)

)
)
(timing (delay 2))

(bind (n inputData (second range)

Briefly, the beginning of the definition defines the input
and output ports of the modules. They are parameterized
by the variables declared. The types of the ports are de-
clared by the properties section. The criteria for global
performance parameters such as time, area, and power are
declared next; note how they can be parameterized by the
variable n. The parts section declares the different sec-
tions for each different control operation. These subsec-
tions include the graph to be matched and how to calculate
the value of the variables. The exact syntax and semantics
of the data flow graph description are not of critical im-
portance; the full details can be found in [18].

2) Matcher Operation: So that the matcher has an idea
of where to start matching, each library subgraph has an
“‘entry node’’ that the matcher uses to start traversing the
data flow graph. A table gives the correspondence be-
tween node labels and the library entries with those entry
node labels. In the previous example, the entry nodes
would be the ANY node in USE and IDENTIFIER node in
assignment and insertion.

The matcher starts by iterating through the symbol table.
The graph matcher proceeds from node to node in a depth
first manner by following both forward and backward arcs.
It works backwards from the terminal nodes to the interior
of the graph. Each match is recorded and associated with the
library implementation and the specific control bindings that
would cover the data flow subgraph. It stops traversing a
branch (arc) of the graph whenever:

1) A node has been already traversed [success].
2) A node label does not agree [failure].
3) A node type does not agree [failure].

Note also that in case (3), node types are a direct result
of property determination and declaration. The use of node
types permits the matches to be restricted by data type.

range-size-in-bits))

Rather than backtrack whenever a failure is detected,
the whole matcher returns a failure. This has two conse-
quences: First, the matcher runs in linear time. Second,
any part that requires more than one match must be de-
tailed in the library. A success, on the other hand, indi-
cates that the matcher has gone as far as it can go and that
other paths should be pursued. It should also be obvious
that no node will be traversed twice. Also, a special node
label ANY will match any node (a so-called ‘‘wild card’”
match).

Nodes can have both labels and types. Node types are a
result of property determination and declaration. Node types
permit the matches to be restricted by type. This is typically
used in matching typed identifiers (found in most program-
ming languages) with specific typed implementations.

3) The Matching Algorithm: The matching algorithm
assumes the existence of the following data structures:

1) A symbol table, mapping symbols to nodes in the
data flow graph.

2) A data flow graph.

3) A control flow graph.

4) A table mapping symbols to possible implementa-
tions and subparts of the implementations.

The matcher starts by sequencing through the symbol
table. The graph matcher works backwards from the ter-
minal nodes to the interior of the graph. Each complete
subgraph match is recorded and associated with the im-
plementation and the control signal bindings that match
the data flow subgraph. It is also recorded on each node
of the match. Therefore, it is a trivial matter to calculate
the number of matches on any node (of course, a node
with zero matches is uncovered). The matcher algorithm
follows, written in a pseudoset language.

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

;The Match procedure matches up the data flow nodes in the data flow
;graph with the data flow subgraphs in the library. Its side effect
;15 to create match nodes that detail these matchings.

procedure Match() is
; symbols here include both identifiers and operators
foreach symbol in the symbol-table do
foreach data-flow-node bound to the symbol do
;Find all the possible implementations by looking them up in the
;symbol to implementation table. Here "implement' means module and
;"part’” means the name of the function of the module
;(i.e., module=ALU,part=+)
foreach implement, part in the
symbol-to-implementation-tableldata-flow-nodel do
Match-from-node(data-flow=-node, implement, part)
end foreach
;Now match using the ANY nodes as well
foreach implement, part in the
symbol-to-implementation-tablel[ANY]l do
Match-from-node(data-flow-node, implement, part)
end foreach
end for
end Match

iMatch-from-node tries to establish a match starting from data-flow-node
;tothe implementation "implementation'" using the part name "part-name'.

procedure Match-from-node(data-flow-node, implementation, part-name)
;Matches are specific to a given control flow node because otherwise
;the matcher would try combinations that weren't actually used.
foreach control-flow-node of the data-flow-node do

1233

;Each "sub part'” of a implementation (library module) has a graph (sub-graph).

;This is matched against the program data flow graph. If successful,
it creates a match node.
foreach sub-graph of the implementationlpart-namel] do

if Match-graph-from-node(data-flow-node, control-flow-node, sub-graph)

then
Match-Check (Create-match-node (sub-graph, implementation,
part-name))
end foreach sub-graph
end foreach control-flow-node
end Match-from-node

;/Match-graph-from-node tries to match the data flow graph ''graph"

;starting from the node '"data-flow-node”.

;The matcher succeeds only if the nodes were used by 'control-flow-node’.

;The exact details of the graph matcher are omitted due to the dependency on the
;graph representations.

procedure Match-graph-from-node(data-flow-node, control-flow-node, graph)
if the control-flow-node is in the control-flow-nodes of
the data-flow-node then
(match the graph from the description using depth first search)
end Match-graph-from-node

;Match-Check tries to determine whether the match is just a new

1234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

;part of an already existing implementation. If it is a new part,
;jthe it returns the instance of the old implementation, else nil

procedure Match-Check(match-node)
;Search all the possible matches (the union of all the matches of all the nodes
;in the new match-node).
foreach other-match-node in the union of matches of the nodes
data-flow-graph of the match-node do
;Make sure the implementations match

in the

if the implementation of the
the implementation of the
;If so, then if the nodes
;with past matches
; (i.e.,

matches already made),

other-match-node =
match-node anND
of the match-node overlap (intersect)

then return the old instance

the set of nodes in the graph of the match-node intersect
the set of nodes of past-matches of the implementation of the match then

Add-match-to-instance(match-node,

end foreach other-match-node
end Match-Check

It should be noted that the graph matcher can find mul-
tiple operations covered by a single part in the library.
Each subpart also has the relevant control signal binding
described in the part declaration. This is relevant to the
synthesis of the control section.

C. Binding and Instantiation

After matching, each variable in the matched subgraph
must be instantiated by binding the appropriate values to
the template variables. As a result of property extraction
and type declaration, each identifier node in the data flow
graph has a type and other properties attached to it. These
properties are used to bind variables.

The binding between the template variables and the
properties is specified as part of the library module defi-
nition in the library as a 3-tuple: the variable name, the
property and the interpretation function. If the interpre-
tation function is absent, then it is assumed to be the iden-
tity function, i.e., no interpretation is done. An example
of a useful interpretation function is one that takes an in-
teger range and interprets it as a size. Such an example
can be found in all the bind definitions of the library ex-
ample.

III. CONSTRAINTS
A. Use of Constraints in VLSI Design

1) Introduction: Constraints are present at all levels of
VLSI design. Table I illustrates four possible levels of
constraints in a simplified design hierarchy. This is not
meant to be all encompassing, but rather to show differing
levels of constraints in the design.

At the bottom level, constraints called design rules
specify the minimum spacing of lines. The next level up
is the transistor level; e.g., transistor ; must have a ratio
of 2: 1 with transistor ¢,. The next level up are cells. Typ-
ical intercell constraints are of the form ‘‘port g does not
have drivers, therefore it must be close to its sink.”” Cells

instance of other-node)

make up modules, and module constraints specify prop-
erties. For example, ‘‘module M, port input 4 takes par-
allel, two’s complement integers.”” At the top level, mod-
ules are connected together to form systems. The
constraints at the system level are global performance
constraints. Examples of global performance constraints
include area, critical path time, computational period, and
so forth.

The lowest level of representation in this compiler is
the module layer. The intermodule constraints have a lo-
cal nature; they exist between ports of the modules that
are connected by data paths. These will be called *‘port
constraints.”’

There are also more global constraints. These con-
straints express the high level performance and resource
bounds. These will be called ‘“specification constraints.”’

Finally, there are constraints that are specific to mod-
ules being matched. If these constraints are satisfied dur-
ing matching, then the module is matched; otherwise, the
module is not matched. These constraints will be called
“‘matching constraints.’’

The following three sections discuss the algorithms used
to check port, specification, and matching constraints.

2) Port Constraints: There are two ideas behind the use
of port constraints. The first purpose of the port con-
straints is to ensure that other modules connected to the
port will be able to ‘‘talk’’ to the module (i.e., the ports
share common typing). Note that every module in the li-
brary has semantics (or properties) associated with each
port. If these semantics can be matched, then the connec-
tion is valid.

The second purpose of port constraints is to establish
data paths between modules. When a module description
is given to the system, there are no indications about
which ports of which modules can connect to a particular
port. Therefore, one method of connecting ports of mod-
ules is to match the types of the ports.

Specifically, consider the use of program properties

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE 1235

TABLE 1 TABLE I
CONSTRAINT LEVELS YASL CONSTRAINT MATRIX
Level Constraint Type Serial Parallel Integer Float Character
circuit performance constraints parallel DEAD OK OK OK OK
module signal properties serial OK DEAD OK OK OK
cellular intercell rules integer OK OK OK DEAD OK
transistor transistor sizing float OK OK DEAD OK DEAD
mask design rules character OK OK OK DEAD OK

such as types in selection. If port constraints are defined as binary relations over types, then the constraints can be
expressed as the relation equals(t,, 1,), where ¢, and t, are the types of ports. The actual type matching takes place
during selection. Each type of the ports on the newly selected module is traced backward to the connecting module.
If the module is not selected, then the port is deemed acceptable; the type checking will take place when the other
module is selected. If the other module has been selected, then the type of the port on the other module is compared
(using the relation *‘type-compare’’) with the type of the port on the newly selected module. If they match, then the
selection is permitted to proceed. Otherwise, the selection is put into the ‘‘reject bin.”’

For example, take the case of the two nodes n; and ny, each with a parallel and serial implementation. Assume that
n; and n, are connected, i.e., there is a data path between them. During the search phase of selection if n; is selected
first, then attempts to propagate the port constraints will fail, as n, is not instantiated yet. When the search reaches
ny, then the port types of n; and n, are checked, since they will both be instantiated.

Note that matching also involves searching—each port of every selection must be matched against every other port
of the connected selections. For example, suppose port 4 has types ¢, and ¢, and port B has types #; and 7,. Then type
1) is checked with type 7, and then type 7,. Likewise, this will happen with type 1,. The demonstration program
implements this by using a depth-first search.

There is a close correspondence between satisfying local constraints, such as port constraints, and the ‘‘consistent
labeling’’ [19] problem of classical artificial intelligence. For each choice made by the selection algorithm, the choice
must agree with the choices already made. Furthermore, all of the succeeding choices must agree with the choice
being made. Note that every choice restricts further choices by making the problem more constrained due to the new
constraints.

Local constraints were used extremely successfully by Waltz [20]. Using a labeling scheme, he used the interaction
between labels in a line drawing to drastically reduce the search space of interpretations.

The constraint matrix used by YASL is shown in Table II. 0K means that the connection is fine, DEAD means that the
combination is incompatible and should be thrown out. The port type constraint matrix is shown in Table III.

The algorithm for port constraint propagation follows.

;/propagate-constraints propagates as many properties as possible in

;the data flow graph.

procedure propagate-constraints(match-nodes) is

sLoop through all the matches
foreach match-node in the match-nodes
;Now search through the graph of the matched node looking for ports.
foreach part of the graph of the match-node do
if the part (of the graph) is a port then

;if the port is declared an INPUT port, then go backward

sthrough the graph

;(to the connecting connecting OUTPUT port).

if the node is declared in the INPUT section then
foreach connecting-node in TraverseGraphFromNode
(node, BACKWARDS) do

propagate-properties(node, connecting-node)

else

;if the port is declared an OUTPUT port,

;then go backward through the graph

;(to the connecting connecting INPUT port).

if the node is declared in the OUTPUT section then
foreach connecting-node in TraverseGraphFromNode
(node, FORWARDS) do

propagate-properties(node, connecting-node)
end propagate-constraints

1236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

;propagate-properties tries to propagate all
library via

;port-node(which points to the
;to the connecting-node.

procedure propagate-properties(port-node,

the properties of the

its matches)

connecting-node):

;First, make sure that they talk to each other at the same time.
if the control-node of the match-node of the port-node =
the control-node of the match-node of the connecting-node

then
;loop through all
;making sure their
foreach match-node
if the
is in the

instance

end propagate-properties.

procedure PropagatePropertiesFromNodeIntoNode(from-node,
is only concerned with matching ports

;This

if the to-node is a port then

if property-compatibility(from-node,
AddPropertiesFromNodeToNode(from-node,

return success
else
return failure
end.

;jproperty-compatibility tests to see
;flow nodes are '"compatible'". This

procedure property-compatibility(from-node,

if compatibility-Tablelfrom-node,
else return failure

Note that the procedure TraverseGraphFromNode
goes backward or forward one link in the data flow graph
depending on ‘‘direction.”’ AddPropertyFromNodeTo-
Node adds the property list of the first node to the second.

3) Matching Constraints: After a module’s data flow
subgraph has been matched with the program data flow
graph, there are further constraints that may require test-
ing. Specifically, a module may have certain use require-
ments that must be satisfied before the module is finally
selected. A good example of this is the sighal processing
domain where different implementations of a filter have
different performance characteristics (noise, sideband
suppression, Q, etc.). These performance criteria are
stated as part of the module specification and are checked
before being officially matched.

As an example, take the implementation of a set using
linked lists. One criterion (constraint) for selection might
be “‘use this if the number of items in the set will exceed
100.”’ This would be specified as part of the module spec-
ification as (constraint (> size 100)). The actual
checking of matching constraints is done during search (im-
plementation selection).

4) Specification Constraints: Specification constraints
are specified by the user of the system before selection

to-nodel] =

the connected matches,

is selected.

in match-nodes of connecting-node do
instance of the match-node of the connecting-node
instances of the search-node then
PropagatePropertiesFromNodeIntoNode(port-node,

connected-node);

to-node) is

connected-node) then
connected-node)

if the properties of two data
is done with a simple table lookup.

to-riode) is
OK then return success

begins. These constraints reflect the goals of performance
and resource usage. For example, a designer may want a
design to fit in a definite amount of area or for certain
procedures to be performed in a certain amount of time.
The former is an example of a resource constraint (area
< area-bound); the latter is an example of a performance
constraint (time-for-function < time-bound). Note that
both of these constraints are taken to be musts; any design
created by the system must satisfy these constraints.

But what happens if a selection is made that violates
these constraints? There are two choices: 1) discard it and
2) try to change the design into a workable one which
satisfies the constraints. The ‘‘massaging’’ of the designs
is largely an unexplored area. Darringer [21] used very
local transformations for very low level logic designs. The
DSL group [13] and Trickey [4] used standard compiler
transformations such as loop unrolling. Snow et al. [22]
applied transformations to value trace graphs as a form of
global optimization. A similar proposal is the use of con-
straint triggered “‘critics””' [23] as an ‘‘on demand”’
method of optimization.

IThe term ‘‘critics’” is a term from Artificial Intelligence for heuristic
methods used to fix bugs in plans. See Sussman [24].

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

TABLE III
PORT-TYPE CONSTRAINT MATRIX
Type Input Output
input DEAD OK
output OK DEAD

Specification constraint checking, like local constraint
propagation, is done with each implementation selection.
Unlike local port constraints, specification constraints are
binary relations between a resource and a fixed, measur-
able bound. The implementation of specification con-
straint checking is discussed in the section on search.

The computation of time and area bounds in the VLSI
domain are complex and can be only approximated in the
implemented system because of the lack of layout knowl-
edge. Area is currently measured by simply adding the
area of the selected implementations to the current total.
Realistic time bounds are much more complex; the pro-
gram just adds up module delays. This is not sufficient,
since what is really required is a notion of critical path.
The lack of good timing measures is discussed in greater
detail in the conclusion.

IV. SEARCH AND IMPLEMENTATION SELECTION

Once the matcher has found viable implementation
choices (including resolution of port and matching con-
straints), the next step is to somehow choose implemen-
tations that cover every data flow node in the program.
By using a modified breadth first search, the search phase
can return with multiple designs. Existing compilers re-
turn with a single “‘best’’ design; this search returns with
several.

The following sections consider:

1) how to search through the implementation choices.

2) how to evaluate possible implementation choices.

3) the effects of search and evaluation on the library
description.

A. Selection Using Search

1. Introduction: At this stage, the matcher has found
matches between the library and the program, so every
node in the program’s data flow graph should have a set

procedure Search() is
old-node-list := nil;
;First,
;("instances")

sort according to the number of possible

1237

of possible instances attached to it. Selection is the pro-
cess of choosing among the instances attached to the data
flow nodes. It is also responsible for checking constraints
discussed in the previous section. The selection procedure
works as follows: First, the nodes in the data flow graph
are sorted by the number of instances are attached to the
node. The list is sorted in order to the smallest to the larg-
est. This permits the selection procedure to start from the
most ‘‘obvious’’ (most constrained) choices and continue
to the most ‘‘complex’’ choices. Next, the search pro-
ceeds from node to node and for each instance attached to
that node

1) Checks if this instance has already been selected by
another node.

2) Checks port types of the new instance.

3) Checks for overlap of the new instance.

4) Evaluates the costs of the new instance.

5) Adds these costs to the costs of the already chosen
instances.

6) Checks each new choice to see if it violates design
constraints (and calls the appropriate critics if it
does).

The first step makes certain that the choice has not al-
ready been made. This can happen if the instance involves
two or more data flow nodes, and some other node has
already been selected before the node being expanded.
This is perfectly permissible and no further evaluation is
done.

The second step checks the type compatibility of the
new instance and the instances that it ‘‘talks’’ to. If con-
flicts exist, then the instance is not chosen.

The third step is necessary to ensure that the new in-
stance does not use any of the same terminals as any of
the existing instances. This prevents multiple represen-
tations for the same variable.

The fourth and fifth steps evaluate the resources now
consumed by the selections made so far.

The last step, step six, ensures that the new addition
does not cause the generated machine to exceed design
requirements. As a side effect, a possibly inefficient ma-
chine may become optimized in order to meet the design
requirements given by the user.

The following is the pseudocode of the search proce-
dure:

implementation choices

sort search-nodes by number of instances into node-list;

foreach node in node-list do
new-node-list :=
;Now,
shead of the list
sort new-node-list by score;

CrossProduct(node,
sort them by the metric so that the most promising ones are at the

old-node-list);

;The user can select either full breadth first search (without pruning),

1238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

;a staged search with constant pruning or a contracting beam.
switch search-type into
case CONTRACTING:
truncate new-node-list at
maximumBeamSize - lLevel * beamIncrement;
reject truncated nodes;
case STAGED:
truncate new-node-list at maximumBeamSize;
truncate new-node-list at maximumBeamSize;
case FULL:
end; of switch
old-node-list := new-node-list;
end; of foreach
end Search.

;CrossProduct does exactly what its name implies - it returns the
;cross product of the input node and the list of nodes.

procedure CrossProduct(node, list-of-nodes) is
;I1f the list is starting out, initialize it
if List-of-nodes = nil then return node
else
sNext, check to see of the instance has already been chosen
i(It's possible that two data flow nodes can share an implementation)
if the instance of the node is in
the instances of List-of-nodes then ignore
else
if Overlaps(instance of the node, instances of the list-of-nodes)
then ignore
else
return NewEntry(node, list-of-nodes)
end CrossProduct

:Overlaps checks to see of the data flow graphs of the instances overlap.

procedure Overlaps(instance, instance-list) is
foreach other-instance in instance-List do
if nodes of instance INTERSECT with
nodes of other-instance then
return success
else
return failure
end Overlaps

procedure NewEntry(new-node, past-nodes) is
;First, check to see if the node is already there
if node is in past-nodes then return
else
;If there aren't any other nodes, then create one for sure
if past-nodes = NIL
then
create new-search-node;
score new-search-node;
sHere is where properties are propagated
if PropagateProperties(new-search-node) then
reject new search-node;
;and global constraints checked (and maybe critics called)

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

1239

if ConstraintfFailure(new-search-node) then

reject new-search-node;
end NewEntry

procedure ConstraintFailure{(search-node) is
(performance) constraints,

;To check the global
the design.

;If any constraint fails,
the constraint.

foreach global-constraint

then call all

check each constraint against

the critics associated with

in global-constraint-table do

if Check-Constraint(search-node, global-constraint) then

foreach critic
CallCritic(critic)
;Now check the global
return failure...

foreach global-constraint
if Check-Constraint(search-node,

return failure;

return success

B. Search Techniques

1) Introduction: Search procedures can be broadly di-
vided into backtracking and non-backtracking methods (A
general overview of search techniques can be found in
[25]). Both of these search methods have drawbacks:
Backtracking searches (such as depth first search) can be
expensive (in time costs), while breadth-first searches are
exponential in space costs.

One solution, therefore, is to choose a search that can
run in bounded time and bounded space. Breadth-first
search can be modified to have a bounded search space by
pruning the search space at every choice level. One ad-
vantage of breadth-first search is that it can return with
more than one result.

2) Staged Search: Another way to surmount the expon-
tential time and space of a breadth-first search is to ex-
pand only the most promising nodes at any stage. Lowerre
[26] used this in the Harpy system and called it a ‘‘beam
search.”” (The list of available nodes is called the
‘‘beam.’’) Nilsson calls it a “‘staged search.’’ It was orig-
inally used by Doran and Michie [27] in a graph traverser.
The problem with a staged search that it assumes that
every step has the same pruning factor. However, when
the search begins with the most constrained variable, there
are very few choices. As the search proceeds, the number
of choices expands. Therefore, the idea behind the con-
tracting beam search is to permit extensive branching at
first and to focus (i.e., contract) the beam as the search
proceeds. The purpose of the contraction is to allow as
many constraints to interact as possible during the begin-
ning stages of the search, but as the search progresses, to
count on constraint interaction to bring the search within
bounds.

C. Metrics

1) Introduction: At each stage of the search, an eval-
uation function is called to assess the resources being used

constraints again;

in critics of global-constraint do

if they're still unreasonable then

in global-constraint-table do
global-constraint) then

at the level of the search. These functions are called
““metrics,”’ and they guide the search by ‘‘measuring’’
the resources consumed by each collection of instances on
the search ‘‘beam.”’

The design of a metric involves two factors:

1) fairness—the function should not permit unwork-
able solutions to achieve high scores.

2) accuracy—if possible, the metric function should
return a value close to the ‘‘real world’’ resources
consumed.

The last condition is required because the global (re-
source) constraints that the user provides are in terms that
the user understands. Therefore, the system and the user
must agree on the calculation of the metrics, otherwise
the specification constraints will be either too high or too
low. If the metric is overestimated, then the threshold for
optimization will be exceeded too often and the circuit
may be excessively optimized. It the metric underesti-
mates, then the optimizer will not be called often enough
and the resulting circuit will be inefficient.

There has been considerable theoretical work on com-
plexity measures for VLSI. This can be used as a starting
point for the derivation of real metrics.

2) VLSI Metrics: Most of the work in VLSI theory
[28]-[30] uses a complexity measure of AT? where 4 is
the area of the circuit and T is the time required to com-
pute the result. This idea was extended to the digital sig-
nal processing domain by Cappello and Steiglitz [31] who
used a complexity measure of ATP, where P is the period
of the computation. Note that the period of a pipelined
function is much less than the period for a nonpipelined
function because of the higher throughput possible when
the pipe is full. Therefore, this metric function favors
pipelined implementations.

Wire areas are unknown until the placement and rout-
ing subsystem has been run. Therefore, it is not possible

1240

to obtain accurate figures of area consumption. As a re-
sult, the scheme behind the metrics actually used is to
total the resources consumed by the non-wire portions of
the machine (the modules) and estimate the wire usage.
Use of a system like PLEST [32] would be extremely use-
ful in obtaining reliable estimates of total chip area.

3) Actual Metrics: The section on binding detailed how
the instantiated modules are used by the metrics to cal-
culate the evaluation parameter. Each of these actions has
an impact on the specification of the library.

As stated earlier, most library modules are parameter-
ized so that the compiler can generate arbitrarily wide in-
stances. The metrics also have an impact on module spec-
ification. Each module must have its height and width
specified so that area can be computed. Of course, the
height and width formulas can be parameterized with the
module parameters and bound later. Area computation
may also involve some overhead, so that must be included
also.

As an example of the library specification details ex-
plained above, consider the example library. The same
parallel bit vector set representation would have the fol-
lowing area calculation: '

(parameter n)

(area (width (times 20 n)) (height 100)).

Likewise, timing parameters can be specified:
(timing (delay n)).

After the parameters have been bound, these functions
can then be evaluated and used by the metric functions.
The implementation used a metric function of

N
2 AT
1

where A; is the area of module and T; is the time required
to compute the result of module i. N is the number of
modules. The latter is clearly a severe approximation.

V. MACHINE GENERATION

To recapitulate, the stage is now set for the actual gen-
eration of signal paths; the program has been analyzed
and the selection of implementations has been made. After
generation is complete, the data paths will be established
and the control section will be generated. Machine gen-
eration begins by considering the control paths.

A. Control Paths

When the data flow nodes in the program were being
created by the data flow analysis procedure, they were
tagged with the control flow node that was ‘‘active’’ at

procedure ControlStoreGeneration is
foreach node in the control-flow-graph
word := NewControlWord();
switch Label of node into

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

that time. For example, in an assignment statement, all
the data flow nodes on the right-hand side (as well as the
data flow node on the left-hand side) would have the name
of the assignment node in the control flow graph attached
to them.

Data flow nodes also have a list of instances that “‘in-
volve”’ the data flow node. It is therefore possible to tag
each instance with the control flow node via the data flow
nodes. As a result of this tagging, it is now possible to
mark the control flow nodes with the instances that are
active at that node.

Each control node also has a label that directs control
flow. These labels are generated by the control flow anal-
ysis procedure.

Note that each match node is a specific ‘‘subsection’’
of a library module—in particular, these matches have
bound control signals. These signals are the fields that
must emanate from the control store. So control field gen-
eration is simply emitting the control bindings of every
match of every instance of the implementation of a library
module. The last matter in control field generation is the
assignment of the microprogram counter field. Each con-
trol flow node has two pointers to other control nodes.
These pointers are the ‘‘success’” and ‘‘failure’’ pointers.
Only control flow nodes generated by conditional expres-
sions use the failure field. This field becomes the program
counter field. As a default, the microcontroller assumes
that the control word after the current control word will
be located at the current program counter +1.

It is important to note that the current scheme of control
flow generation does not solve the problems of prece-
dence. For example, assignment statements involving the
same variable on the left- and right-hand sides of the =
generate simultaneous load and store microcommands for
the implementation of the variable. This problem is easily
solved; all that is required is a procedure that detects such
conflicts and moves the appropriate conflicting operation
down in the control store. (In this case, it would be the
store).

Notice that the control store is not compacted in any
way. A useful addition at this stage would be a microcode
optimizer that would move microcode fields upward in the
control store.

1) Control store generation: Generation of the con-
trol store is simple. For each node in the control flow
graph, extract the control fields from the library defini-
tions of each instance used at the node. If the node is
LOOP, EXIT or TEST, then change the success and fail-
ure fields of the microcode word. Note that this omits the
generation of the jump fields and compression of empty
nodes (nodes without any control fields). The following al-
gorithm describes the control store generation algorithm in
the pseudoset language.

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

case LOOP:

word.success = node.success;
case EXIT:

word.success = node.success;
case TEST:

word.success =
word.failure node.failure;

case default: ;MUST be a ordinary node
word.success = node.success;
;JNow, for all

;store the control
foreach instance in
foreach match

node.success;

the matches of all the
signal bindings from the

instances of search-node do
in matches of the

1241

instances for a given control node

implementation.

;This selects only the match nodes that effect that the

;particular instance

instance INTERSECT matches of the node do

;store field value (field name =
The "implementation'
library module.

control of match.part :=

;by the instance.
;of the

word.instance

control field of match part)
is the-description

implementation of match.implements;

end ControlStoreGeneration

B. Data Path Generation

The previous section has shown how to construct the
control paths and the control store for the machine that
implements the input program. The last task is the gen-
eration of the data paths between the modules.

Data paths are informally established during selection
via port constraints. As each selection is made, a data
path is established between the ports of the new selection
and the ports of the selections connected to the new in-
stance via the data arcs in the data flow graph.

Net list generation is performed in two stages. First,
the connections are made for every port in every instance
(except for control ports). This establishes the data path
section of the machine. Second, the output control ports
of every instance are connected to the jump field multi-
plexer. Next, the control fields from the control store are
finally connected to the instances they control. As a last
step, the control field of the jump multiplexer is con-
nected to the jump control field.

VI. IMPLEMENTATION

The implemented system (called SILI, short for SILI-
con) is organized along the lines shown in Fig. 5. Com-
pare this with Fig. 1. The program analysis is divided into
control and data flow analysis; the control flow graph is
not used by the matcher at all. The machine generation
phase consists of control store generation and net list gen-
eration. Note that solid lines denote data flow; dotted
boxes denote unimplemented sections. The labels on the
arcs are the names of data formats.

Before SILI can process the input program, the various
language dependent files must be read in. SILI is designed

to be language independent—the syntax and semantics of
the language are defined by language dependent files that
represent the parsing rules (productions), the data and
control flow ‘‘equations,’’ the property propagation table,
and the implementation library.

Briefly, SILI runs as follows: the input program is
scanned and parsed by a recursive descent parser. The
output of the parser is an ordinary parse tree. The parse
tree is used as an intermediate form for several stages of
analysis. The first action after parsing is control and data
flow analysis. After this is completed, both the data flow
and control flow graphs have been constructed. This is a
good time for optimization of the data flow graph but this
was not implemented in SILI. Next, the parse tree is trav-
ersed and declarations of types and other properties are
attached to the terminal data flow nodes. Note that the
rather baroque type declarations of both YASL and
CLASP are meant as a substitute for more involved prop-
erty extraction. Next, property extraction is done and
properties are propagated to the non-terminal (interior)
nodes of the data flow graph.

The graph matcher takes the decorated data flow nodes
and the library of data flow nodes and generates matches
called ‘‘instances.’”’ These instances are given to the
search phase which performs the breadth-first search.

Note that critics may be called at any stage of the
search, hence there is a dashed line to the ‘“‘critics gal-
lery,”’ which was intended to be a collection of LISP code.
Finally, the remaining implementations are given to the
control store generator, which creates the control store
and assigns the control fields. The final output is the net
list generated from the implementations along with a list
of “‘parts’’ from the library (with bound parameters).

1242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

Data flow Control flow Control flow
equations Analysis . equations
Control flow graph
Type rules
Library grephs
Library defas
1 Lint of instances
Control Store
Generation
l Complete implementation
Net List
Generation

luﬂ list

Fig. 5. Detailed block diagram of system organization.

The implementation was written in Franz-Lisp, a
MacLisp dialect (in turn a descendant of Lisp 1.5) that
runs on the VAX-11 series computers. The program oc-
cupies 475 pages of memory before compilation begins.
The implemenation is meant as a ‘‘proof of concept’’ pro-
totype; obviously, rewriting the code in an algorithmic

program transitiveClosure

set of set of integer : base, related,
set of integer X,Y:
set with size 0 of integer : phi;

related := phi;
newlyRelated := base;
while (newlyRelated <> phi) do

newlyRelated,

Fig. 6. Data flow graph of the transitive closure program.

language such as C would reduce the run time consider-
ably. Also, precomputation of the constraint propagation
between module ports would eliminate on-line computa-
tion of constraint violation during search.

A. An Example of System Operation

As a demonstration of the capabilities of the system,
consider the following program written in YASL (this
program is simpler than the CLASP program and there-
fore easier to explain):

found;

begin
found := phi;
forall x in newlyRelated do
forall y in x do
found := found with y;
related := related with newlyRelated;
newlyRelated := found - related
end

end.

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

1243

Fig. 7. Control flow graph of the transitive closure program.

deletion addition membership

reset assignment initialize iterate

IO RSP

4 5 6 7

March number

Fig. 8. Dataflow subgraphs of the binary tree module.

This program is a slightly reworked example from
Low’s dissertation [33, p. 14], written in the language
YASL. The input library for YASL contains descriptions
of sets inplemented as both parallel and serial registers.
The data flow graph for the input program is shown in
Fig. 6. The control flow graph of the example program is
shown in Fig. 7.

As an example of matching, consider the binary tree set
implementation (in the library) which has the data flow
subgraphs shown in Fig. 8.

After calling the matcher with the subgraphs of the bi-
nary tree implementation, the data flow graph of the sam-

ple program will be matched as shown in Fig. 9. Note
that the numbers next to the nodes in the program data
flow graph denoté the match number of the data flow
subgraphs of the binary tree implementation shown in the
previous figure.

Now, consider the following subgraph of the data flow
graph in Fig. 9 (the port names are shown in italics). As
each node is picked during search, the properties attached
to each port are propagated to their connecting port. Con-
sider the subgraph shown in Figure 10.

There are two cases to be considered. In the first case,
all the terminals (related, newlyRelated and found)

1244

Fig. 9. Match of the data flow graph and binary tree module.

refated
outputData

newlyRelated

found

outputData
Fig. 10. Data flow subgraph.

are selected. In the second case, the nonterminals (in the
subgraph this is only —) have been selected first. The two
tables below illustrate the actions of the propagation algo-
rithm. The notation ‘‘check’’ means that the properties of
the ports will be checked whereas the notation ‘‘no action’’
means that no action will be taken since the node on the
‘“‘other end of the wire’’ is not instantiated. The first case
when the terminals are selected first is shown in Table IV.
The second case when nonterminals are selected first is
shown in Table V. Finally, the control section for the sample
program (for the all parallel implementation) is found in Fig.
11.

The generated control store fields for one of the all parallel

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

TABLE IV
CONSTRAINT PROPAGATION EXAMPLE: TERMINALS SELECTED FIRST

from node to node action taken
related:outputData -iinputA no acqon
newlyRelated:inputData -:inputB no action
found:outputData -inputB no action
-:inputA related:outputData check
-:inputB newlyRelated:inputData check
-:outputData found:outputData check

TABLE V
CONSTRAINT PROPAGATION EXAMPLE: NONTERMINALS SELECTED FIRST

from node to node action taken
-:inputA related:outputData no action
-:inputB found:outputData no action
-:outputData newlyRelated:inputData no action
related:outputData -:inputA check
newlyRelated:inputData -:outputData check
found:outputData -:inputB check
Microcode Memory

| Test field I jump PC I Control fields for selections

next
possible

to data path

Microcode memory address
Fig. 11. Generated microcontroller.

solutions are shown in Table VI. The final step is the con-
version of the machine graph to a ‘‘net list’’ (a connection
list) suitable for a placement and routing system. The ex-
ample YASL program compiles into the data path shown in
Fig. 12.

The example program generated two solutions (the fully
serial and fully parallel solution) using a library with parallel
and serial implementations of the same modules (a total of
26 modules). The search makes no wrong selections at any
point due to the use of the local constraint propagation al-
gorithm.

VII. RESULTS

The ultimate goal of this work, as elucidated in the in-
troduction, was to enable an unsophisticated user to gen-
erate a VLSI circuit that executed the user’s program and
also met the user’s established design requirements.

SILI meets these goals through its exploitation of var-
ious constraint based methods and heuristic search. By
using an external library, the low level constraints can be
met via other lower level design tools. However, there are
still problems to be solved.

KAHRS: SILICON COMPILATION OF HIGH LEVEL LANGUAGE

1245

TABLE VI
MICROCODE FIELDS FOR SAMPLE PROGRAM AND LIBRARY

PC base newlyRelated related found X y test next PC

0 reset

1 load store

2 newlyRelated =PHI 12

3 reset

4 reset

5 test

6 iterate store iterator end 10

7 reset

8 test

9 iterate store iterator end 12
10 load with
11 store load load
12

r BinaryTreeOfIntegers:x I
SetOfSetOfinteger-found I r SetOfSetOfimeger-related I
SetOfSetOflntegerSubtraction [SetOfSetOfimegerbase l

\ /

| S5e10fSetOfIntegernewlyRelated

Fig. 12. Data path.

A. Timing Measurements

Unfortunately, SILI lacks a good timing measurement
subsystem. This was due strictly to the amount of effort
spent in describing and analyzing the timing of the gen-
erated circuits. As it stands now, SILI adds up the ‘‘de-
lay’’ times that are specified as part of each implementa-
tion specification. This should be replaced with a timing
analysis subsystem that uses such measurements as the
delay from statement to statement or the delay of a loop.
Systems like those described by Cohen and Zuckerman
[34] or Ramshaw [35] could be extended to cover such
timing calculations. The CADDY system used a very
simple technique for estimating time using control flow
graphs. Such a technique could easily be used here. A
complex timing analysis subsystem should be part of any
silicon compiler.

B. Optimization

The optimization step was not fully completed because
of the implementation complexity; changes to the data
flow graph at any point in the search cannot be passed on
to other designs in progress. A reimplementation taking
care to avoid this problem would ease the implementation
of critics. Without optimization operators, the circuits
created by SILI are unrealizably large. However, even
with such optimization, there is still a problem with the
level of module specification and the direct reduction of
data flow graphs to machines; this is discussed next.

C. One Step Selection

One step selection (direct selection of high level mod-
ules from a library) hides much of the complexity from
the user. Unfortunately, it also hides hierarchy from the
system as well. In order to generate truly optimized de-
signs, each library module should be decomposable.
Without. such a multilevel view, it is impossible to per-
form optimizations within a library module. Such opti-
mizations are mandatory if the generated designs are to
approach the area of human engineered designs. This is
one of the reasons that SILI’s circuits are unreasonably
large.

D. Conclusion

This work is one step toward the ultimate goal of a sys-
tem that compiles a program to a description of an inte-
grated circuit. A start has been made by using techniques
from classical Artificial Intelligence and conventional
compiler theory and practice. This potent combination of
techniques has resulted in the reduction of search space
and an ease of compilation. The work reported in this pa-
per has shown that:

¢ Very high level languages can be used to hide the
implementation complexity of VLSI design.

o Local constraints can cut heuristic search time con-
siderably.

e Heuristic search and constraints can be successfully
used to choose implementations with differing costs.

1246

® The use of graph representations for modules eases
circuit construction and description of module se-
mantics.

ACKNOWLEDGMENT

Diane Litman and Howard Trickey have generously
read this paper and offered detailed comments. The ref-
erees have helped the author refine and clarify this paper
considerably. The former Editor, Michael Lightner, also
helped facilitate the final version of this paper.

REFERENCES

[1] D. Johannsen, ‘‘Bristle blocks: A silicon compiler,”’ in Proc. 16th
Design Automation Conf., San Diego, CA, 1971, pp. 310-313.

[2] D. D. Gajski, N. D. Dutt, and B. M. Pangrle, ‘‘Silicon compilation
(tutorial), in Proc. 1986 Custom Integrated Circuits Conf., 1986, pp.
102-109.

[3] L. Monier and J. Vuillemin, ‘‘Using Silicon Assemblers,”’ in Proc.
VLSI-85, Tokyo, Japan, Aug. 1985, pp. 309-318.

[4] H. W. Tickey, *‘Flamel: A high level hardware compiler,”’ IEEE
Trans. Computer-Aided Design, vol. 6, pp. 259-269, Mar. 1987.

[51 B. M. Pangrle and D. J. Gajski, *‘Design tools for intelligent silicon
compilation,”” IEEE Trans. Computer-Aided Design, vol. 6, pp.
1098-1112, Nov. 1987.

[6] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G.
Lieve, and J. Kim, *“The CMU design automation system,”’ in Proc.
16th Design Automation Conf., San Diego, CA, 1971, pp. 73-80.

[71 M. R. Barbacci and D. P. Siewiorek, The Design and Analysis of
Instruction Set Processors. New York: McGraw-Hill, 1982.

[8] J. Earley, ‘‘Relational data structures for programming languages,”’
Acta Inf., vol. 2, pp. 293-309, 1973,

[9] J. H. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg,
Programming with SETL: An Introduction to SETL. New York:
Springer-Verlag, 1986.

[10] M. Kahrs, “‘Silicon compilation of a very high level signal processing
specification language,’’ in VLSI Signal Processing, P. R. Capello,
Editor. New York: IEEE Press, 1984, pp. 228-238.

[11] M. Hecht, Flow Analysis of Computer Programs. New York: El-
sevier, 1977.

[12] E. A. Snow, ‘*Automation of module set independent register transfer
level design,’” Ph.D. dissertation, Dept. of Electrical Engineering,
Carnegie Mellon Univ., Pittsburgh, PA, April 1978.

[13] R. Camposano and W. Rosenstiel, ‘‘Synthesizing circuits from be-
havioral descriptions,’’ JEEE Trans. Computer-Aided Design, vol. 8,
pp. 171-180, Feb. 1989.

[14] D. Knapp and A. Parker, ‘‘A unified representation for design infor-
mation,”” in Proc. CHDL-85, Tokyo, Japan, Aug. 1985, pp. 337~
353.

[15} D. E. Thomas, C. Y. Hitchcock, T. J. Kowalksu, J. V. Rajan, and
R. A. Walker, ‘‘Automatic data path synthesis,”” IEEE Computer,
vol. 6, pp. 59-70, Dec. 1983.

[16] C. Tseng and D. P. Siewiorek, ‘*Automatic synthesis of data paths
in digital systems,”” IEEE Trans. Computer-Aided Design, vol. S, pp.
379-395, July 1986.

[17] A. J. Parker, J. Pizarro, and M. Milnar, ‘*“‘MAHA: A program for
datapath synthesis,”’ in Proc. 23rd Design Automation Conf. Las Ve-
gas, NV, June 1986, pp. 461-466.

[18] M. W. Kahrs, *‘Silicon compilation of very high level language,’’
Ph.D. dissertation, Univ. Rochester, NY, Oct. 1983.

[19] A. Mackworth, ‘‘Consistency in Networks in relations,”” Artif. In-
tell., vol. 6, pp. 99-118, 1977.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

[20] D. Waltz, “‘Using constraints in computer scene understanding,”’ in
Psycology of Computer Vision, H. Winston, Editor. New York:
McGraw-Hill, 1975, pp. 19-92.

[21] J. A. Darringer and W. H. Joyner, Jr., ‘‘A new look at logical syn-
thesis,”” IBM, Yorktown Heights, NY, RC 8268, May 1980.

[22] E. A. Snow, D. P. Siewiorek, and D. E. Thomas, ‘*A technology-
relative computer-aided design system: abstract representations,
transformations, and design tradeoffs,”’ in Proc. 15th Design Auto-
mation Conf., Las Vegas, NV, 1978, pp. 220-226.

[23] M. Kahrs, ‘‘Critics at optimization elevators in a silicon compiler,”’
in Knowledge Engineering in Computer-Aided Design, J. Gero, Ed-
itor. New York: Elsevier-North-Holland, 1985, pp. 313-325.

[24] G. J. Sussman, A Computer Model of Skill Acquisition. New York:
Elsevier, 1975.

[25] N. J. Nilsson, Principles of Artificial Intelligence.
Tioga Press, 1980.

[26] B. T. Lowerre, ‘“The HARPY speech recognition system,”” Ph.D.
dissertation, Carnegie Mellon Univ., Pittsburgh, PA, 1976, also Tech.
Rep., Carnegie Mellon Univ.

[27] J. Doran, *‘An approach to automatic problem solving,’’ in Machine
Intelligence, D. Mitchie and N. L. Collins, Editors. Edinburgh,
U.K.: Edinburgh University Press, 1967, pp. 105-123.

[28] C. D. Thompson, ‘‘A complexity theory for VLSI,”” Ph.D. disser-

tation, Camegie Mellon Univ., Pittsburgh, PA, Aug. 1980.

[29] G. Baudet, ‘‘On the area required for VLSI circuits,’” in CMU Con-
ference on VLSI Systems and Computations, H. T. Kung, B. Sproull,
and G. Steele, Editors. Rockville, MD: Computer Science Press,
1981, pp. 100-107.

[30] B. Chazelle and L. Monier, ‘‘A model of computation for VLSI with
related complexity results,”” Carnegie Mellon Univ., Pittsburgh, PA,
Tech. Rep. 81-107, Feb. 1981.

[31] P. Capello and K. Steiglitz, ‘‘Digital signal processing applications
of systolic algorithms,”’ in CMU Conference on VLSI Systems and
Computations, H. T. Kung, B. Sproull, and G. Steele, Editors. Rock-
ville, MD: Computer Science Press, 1981.

[32] F.J. Kurdahi and A. C. Parker, ‘*Techniques for area estimation of
VLSl layouts,’” IEEE Trans. on Computer-Aided Design, vol. 8, pp.
81-82, Jan. 1989.

[33] J. R. Low, ‘‘Automatic coding: Choice of data structures, CS-74-
452/AIM-242,>’ Ph.D. dissertation, Stanford Univ., Stanford, CA,
Aug. 1984. (Also Cambridge, MA: Birkhauser.)

[34] J. Cohen and C. Zuckerman, ‘‘Two languages for estimating program
efficiency,’” Comm. ACM, vol. 17, no. 6, pp. 301-307.

[35] L. H. Ramshaw, ‘‘Formalizing the analysis of algorithms,’’ Xerox,
PSRC, CSL-79-5, June 1979, (Also Stanford Univ., Stanford, CA,
STAN-CS-79-741.)

Palo Alto, CA:

Mark Kahrs (S°78-M’82) received the Ph.D. degree in computer science
from the University of Rochester, NY.

He is an Assistant Professor of electrical and computer engineering at
Rutgers University, Piscataway, NJ, where he teaches courses in digital
signal processing, audio engineering, and computer systems architecture.
Formerly, he was with Xerox PARC, the Center for Computer Research in
Music and Acoustics (CCRMA), Stanford University, Stanford, CA, the
Institute de Rechereche et Coordination Acoustique Musique (IRCAM),
Paris, and AT&T Bell Laboratories.

